Response Function of NaI(Tl) Detector and Response Matrix

The crystal size of NaI(Tl) used in this simulation is 2 inches by 2 inches = 5.08 cm by 5.08 cm

15th March, 2017

Introduction

- Distributions measured in physical experiments are usually distorted and transformed by different equipment effects.
- In order to reproduce the real spectrum from the measured one, it is necessary to take into account these effects by the means of the response function.
- Normally this response function can be approximated by a response matrix, as obtaining the following expression,

m=RI

• But we are interested with I, therefore

 $I=mR^{-1}$

• The distance from the source to the Pb block front surface is 3cm while the thickness of lead block to the surface of NaI(Tl) crystal is 3cm.

• The figure display the real events display from Geant4 simulation

Results and Discussions

• Gamma ray from 50 keV to 2000 keV in the interval of 50 keV was used to reproduced photo-peaks.

- The P/T curve describes the probability a photon energy K', when detected, is completely absorbed.
- P/T ratio gives the diagonal element of the response matrix.

Response matrix and Inverse response matrix

• The response matrix elements.

MATRIX M

4x4 matrix is as follows

I	0	1	2	3	
0	0.954	0	0	0	
1	0.126	0.911	0	0	
2	0.009	0.082	0.884	0	
3	0.004	0.019	0.112	0.864	
### # MATRIX	Minv				
4x4 matri	x is as foll	ows			

I	0	1	2	3
0	1.048	-0	-0	-0
1 j	-0.145	1.098	-0	-0
2	0.002776	-0.1018	1.131	-0
3	-0.002025	-0.01094	-0.1466	1.157

• The matrix describes the probability a photon of energy K' that reached the detector is detected as having an energy K.

Summary

- Incorrect physical data are obtained from an analysis of recorded gamma-ray spectra, without application of unfolding methods.
- Analysis of data obtained in the experiments requires accurate knowledge of the shapes of the response functions for a range of gamma ray energies.
- In this context, the conversion of observed measured distribution to a true photon energy spectrum is essentially required.