5g + 1g analysis

JunLee, Kim Korea Univ. Collaboration Meeting @ 7th July, 2017

$K_L \to \pi^0 \pi^0 \pi^0$ Reconstruction Using 5 γ on CsI and 1γ on Barrel

- $\mathbf{K_L} \to \pi^0 \pi^0 \pi^0$ decay samples with 5**Y**s on CsI and 1**Y** on Barrel
- Reconstruction of $2\pi^0$ from 4γ s on CsI
- 1γ Reconstruction from hit information of Barrel (timing and Module ID)
- 17 Reconstruction of the last π^{0} from 1 γ on CsI and 1 γ on Barrel

Reconstruction of Vertex X, Y

Reconstruction Result

• KL3pi0 Generation

Data / M.C.

Response of Barrel

- Red : M.C. Black : Data(Run65 Min Bias.) Green dot : M.C. w/o Resolution
- Time Resolution is reproduced from result of analysis of cosmicray data

Where, const is 1.64 for MB 1.09 for IB

Response of Barrel (2)

Measurement of Barrel Stability

- Stability of Time and Energy of Barrel can be measured by 5g+1g analysis
- Timing Stability with Vertex Time Difference,
 T_{VTD} = T_{VTZ_Barrel} T_{VTZ_Csl}
 With assumption of Csl stability
- Energy Stability with Sampling Fraction
 S.F. = Energy Deposit Gamma Energy

Fine Time Calibration

Fine Energy Calibration

 Sampling Fraction gives detector response in large range of incident gamma
 Gr energy

Moves	Changes
Red 🗲 Green	Modification of Calib. w/ Cosmic Data
Green 🗲 Blue	Fine Energy Calib. w/ Min. Bias. Data

Status of timing stability in 2015 Data

Correction on IB Timing in Run69

 Correction Factors for each module & each integrated 10 runs are prepared

Status of Run74 & Run75

Property of Back Splash Event

5.56

10

30 40 50 Energy Deposit [MeV]

20

10

timing according to deposited energy on Barrel

Back Splash Recovery at g6ana

Back Splash @ KLpiOnunubar

- Preliminary selection
 - (CutCondition|0xc)==0xc
 - (AddCutCondition|0xc0)==0xc0
 - BPCVVetoEne < 1.0</p>
 - MaxShapeChisq < 4.6
 - (MyVetoCondition|0x40)==0x40
 (MB Hit accepted)
- Resolution is applied with regard to

Excluded from veto signal

30

40

Energy Deposit [MeV]

- Energy deposit on barrel
- Gamma Energy

Veto signal

Veto signal

20

10

15.56r

 T_{vTD} [ns]

5.56^L

Back Splash Recovery @ Run62

Background events increased, too.

KL3pi0 Background Rejection

- Mis-reconstruction of vertex induces lower T_{VTD} than center
- Execution of veto with low part of T_{VTD}
- Full background rejection for 1.4e9 KL3pi0 events

KLpi0pi0 Background Rejection

Summary

- Response of Barrel Counters with well reconstructed gamma.
 - Good agreement between M.C. and Data.
 - Fine energy and timing calibration method.
- Time stability is confirmed.
 - Good stability for 2015 data
 - Correction Factors for Run69 are ready.
 - Quite stable in Run74 and Run75
- Recovery of the back-splash events
 - 10% larger acceptance is expected with variable veto window
 - KL2pi0 BG events increased due to wrong reconstruction of vertex
 - Without proper treatment of the mis-reconstruction, it is not applicable.