Photon R_AA at 5 TeV

Yeonju Go

2017 Dec. 08

Datasets

• PbPb

- DATA : /mnt/hadoop/cms/store/user/richard/2015-Data-promptRECO-photonSkims/HIPhoton40AndZ/ PbPb-photonHLTFilter-v3/160202_145715
- MC :
 - /mnt/hadoop/cms/store/user/tatar/official/Pythia8_AllQCDPhoton*Flt30_Hydjet_Cymbal_MB/ HINPbPbWinter16DR-75X_mcRun2_HeavyIon_v14-v1-FOREST/0.root (*: 15,30,50,80,120)
 - /mnt/hadoop/cms/store/user/tatar/official/Pythia8_EmEnrichedDijet*_Hydjet_Cymbal_MB/ HINPbPbWinter16DR-75X_mcRun2_HeavyIon_v14-v1-FOREST/0.root (*: 30,50,80,120,170)

• pp

- DATA : /mnt/hadoop/cms/store/user/luck/2015-Data-promptRECO-photonSkims/pp-photonHLTFilterv0-HiForest/0.root
- MC :
 - Pythia8_Photon*_pp502_TuneCUETP8M1-HINppWinter16DR-75X_mcRun2_asymptotic_ppAt5TeV_v3v1_forest_v1 (*: 15,30,50,80,120)
 - Pythia8_EmEnrDijet*_pp502_TuneCUETP8M1-HINppWinter16DR-75X_mcRun2_asymptotic_ppAt5TeV_forest_v1/0.root (*: 30,50,80,120,170)

• Kinematic range

- |eta|<1.44
- photon pt > 40 GeV
- Trigger : HLT_HISinglePhoton40_Eta1p5_v1
- Event Selection : pcollisionEventSelection

• Corrections

- Photon 2015 Noise (hotspot) rejection
- Electron contamination
- Photon energy correction
- sumIso correction

Efficiency

- Obtained from MC
- Total efficiency (pp selection is the same as pbpb)
 - Trigger+reconstruction+isolation
 - Isolation condition
 - phoHoverE < 0.1
 - phoSigmalEtalEta_2012 < 0.010
 - sumIso < 1 GeV

Yeonju Go

17 December 08

Purity (PbPb)

- Signal template cut :
 - genId = 22
 - |genMomId| <= 22
 - genCallso < 5
 - Signal selection
- Sideband cut :
 - 10 < sumIso < 20

17 December 08

Puity (pp)

• Signal template cut

- phoHoverE < 0.1
- phoSigmalEtalEta_2012 < 0.010
- sumIso < 1 GeV
- the same as PbPb

Sideband cut

- 10 < sumIso < 20
- the same with PbPb sideband cut

Systematics

Photon Energy Scale

- Photon energy correction On/Off (Current)
- Will be updated with the difference between correction in DATA and MC

• Purity

- 1. Sideband cut variation
 - 5 < sumIso < 10
 - 20 < sumIso < 30
- 2. Signal template shift
- 3. TMVA (Toolkit for Multi-variate data Analysis)

Electron Contamination

- Electron rejection cut On/Off (Current)
- Will be updated with 1/4 of it
 - turning off the electron contamination increases the electron fraction up to 20% and the typical fraction of the remaining electron is estimated to be up to 5%

Photon Energy Isolation

MC true gen cut On/Off

Photon Efficiency

CMS

Systematic - Photon Energy Scale

Systematic - Photon Energy Scale

- Y-axis ;
 | R_AA_variation R_AA_nominal |
- ~1 % (after 1/4 quoation)

KOREA

Purity systematic

• When pbpb purity is changed by 0.1

sideband template weighting

Current purity method

- background photon template comes from sideband selection
- assumption : isolated background photon distribution in sigmalEtalEta is the same with non-isolated(sideband) photon's -> NOT true

Sideband template weighting

- ratio between isolated and non-isolated photon's sigmalEtalEta dist. fit as linear function
- sideband template from data can be weighted by the linear function

Sideband comparison b/w iso. and non-iso. bkg photons

Purity with sideband weighting (PbPb)

- Purity values are smaller after sideband weighting
- chi2/ndf values are better after sideband weighting

Yeonju Go

17 December 08

KOREA UNIVERSITY

Purity with sideband weighting (pp)

KOREA UNIVERSITY

R_AA and cross section with sideband weighting

R_AA is a bit higher after sideband weighting

Efficiency

- Obtained from MC
- Total efficiency
 - Trigger+reconstruction+isolation
 - PbPb Isolation condition
 - phoHoverE < 0.1
 - phoSigmalEtalEta_2012 < 0.010
 - sumIso < 5 GeV

pp Isolation condition (from Egamma POG)

BARREL	Medium (79.9%)	
Background Rejection	Medium (86.9%)	
HoverE	0.05	https://twiki.cern.ch/ twiki/bin/view/CMS/ CutBasedPhotonIdentifi cationRun2Archive#SP RING15_selections_25 _ns
$sigma_{ietaieta}$	0.0102	
PF charged hadron isolation	1.37	
Rho corrected PF neutral hadron isolation	1.06 + 0.014*pho_pt + 0.000019* (pho_pt) ²	
Rho corrected PF photon isolation	0.28 + 0.0053*pho_pt	

17 December 08

Purity (PbPb)

- Signal template cut :
 - genId = 22
 - |genMomId| <= 22
 - genCallso < 5
 - Signal isolation condition
- Sideband cut :
 - 10 < sumIso < 20

17 December 08

Puity (pp)

• Signal template cut :

- gen cuts : same as PbPb
- reco cuts from Egamma POG
- Sideband cut : 10 < sumIso < 20
 - same with PbPb sideband cut
 - Q) different variable other than sumIso for sideband cut?

KOREA UNIVERSITY

BARREL	Medium (79.9%)
Background Rejection	Medium (86.9%)
HoverE	0.05
$sigma_{ietaieta}$	0.0102
PF charged hadron isolation	1.37
Rho corrected PF neutral hadron isolation	1.06 + 0.014*pho_pt + 0.000019* (pho_pt) ²
Rho corrected PF photon isolation	0.28 + 0.0053*pho_pt

CMS $\sqrt{s_{NN}}$ =2.76TeV L_{int}(PbPb)= 6.8 µb⁻¹ L_{int}(pp)= 231 nb⁻¹

.

- purity of 0-100 % is reliable?
- R_AA at 50-100 % fluctuate because of low statistic

JHEP04(2011)055

Cross section

