Y(nS) from Run II - pp vs PbPb - Centrality dependence - Event plane dependence

Yongsun Kim (Korea University)

27-Jan-16

Outlook

- Y(1S), Y(2S), Y(3S) fit by single Cyrstalball functions
- Dataset
 - Onia trees from HLT_L1DoubleMu0 prompt RECO available on Jan 19th
- Muon selection
 - Soft muon cuts for both pp and PbPb, w/o HighPurity in inner track
 - Trigger object matching was not applied
 - $p_T^1 > 3.5 \text{GeV}$, $p_T^2 > 4 \text{GeV}$
 - Similar to (HIN-15-001)

- 2x2 kinematic bins
 - $2 p_T$ bins : low p_T (0-5 GeV) & high p_T (5-100 GeV)
 - 2 rapidity : mid (lyl< 1.2) & forward (1.2 < lyl < 2.4)
- Fit procedure

Step 1. 2S/1S, 3S/1S mass ratios were fixed by PDG value

Step 2. Fit pp data

Step 3. Fixed (alpha, n, sigma) for 3 peaks

Step 4. Fit PbPb \rightarrow Only # of signals and Y(1S) mass are free parameters

Fitting in pp (example)

Example in high pT, mid-rapidity. All CB parameters are flaoting.

• 3 single Crystalball (signal) + 1st ordre Chebychev polynomial (background)

Fitting in pp (example)

Example in high pT, mid-rapidity. All CB parameters are flaoting.

Re-fit after fixing (α , n, σ)

 Total number of signals and the ratio (2S+3S)/(1S) was changed by very little amount by parameter fix

 \rightarrow (α , n, σ) values are stable, and can be used for PbPb system

Fitting in pp

Fitting in PbPb

all in ONE

- Large suppression of excited states in overall kinematic ranges
- Suppression is the largest at the high $p_T \&$ mid-rapidity. Double Ratio ~0.2
- Double raitios = ~0.5 for other bins

Centrality dependence

Significant centrality dependence at (high p_T, mid-rapidity)

Centrality dependence

• Significant centrality dependence at (high p_T, mid-rapidity)

Event Plane dependence

- Used the 2nd order plane using both HF
- It seems not flattened yet in our onia tree

• Yet, still valuable for the Y(nS) ratio study

- Calculated the acute angle of Y(nS) and event plane and classified events into 3 bins [0, PI/6, PI/3, PI/2]
- Centrality : 10% 60%

Correlation with event plane

Centrality: 10-60%

 There is a hint of the gradual correlation with the event plane angle at low p_T and mid-rapidity (w/ large statistical uncertainty)

Correlation with event plane

- Y(3S) disappeared for all event plane bins in 10%-60% centrality
- There is a hint of the gradual correlation with the event plane angle at low $p_T\,$, however, with large statistical uncertainty

Correlation with event plane

- As the event plane angle increase
 - Y(2S+3S)/Y(1S) gradually decreased
 - Yield of Y(1S) gradually increased (Uncertainty bar merely meets at 2 sigma)
 - → Excited states and the ground state yield evolves in the **opposite** direction

BACKUP

$\psi(2S)$ to J/ ψ ratio in CMS and ALICE

