Measurement of the Change in Lifetime of 5/2+ Yrast State of ¹³³Cs Isomer due to Gamma Resonance Effect using a System of Mixed Scintillation Detectors

Results from Previous Experiment

Systematic Uncertainty Budget

Source of Uncertainty	±∆ т (ns)	±А т (%)	
Background Effect	0.001	0.016	
Compton Scattering Effect	0.002	0.032	
Uncertainty in Time Resolution	0.017	0.271	
Choice of Gamma Cascade	0.006	0.095	
Counting Statistics	0.015	0.247	
TOTAL	0.024	0.380	

т = (6.282 +/- 0.024) ns

Search for Better Scintillators?

			and the state of the state of the			
Parameter	Nal(TI)	Csl(Pure)	LaBr ₃	BaF ₂	CsI(TI)	PbWo ₄
Resolution (%)	6 – 7	17 –185	3 - 4	12	4 – 5	
Decay Time (ns)	250	35 (s), 6 (f)	16	0.6 – 0.8 (f) 630 (s)	1000	6
Light Yield (Photons/Mev)	40,000	2000	63,000	1800 (f), 10000 (s)	54,000	200
Wavelength (nm)	415	315	380	180 - 240 (f) 310 (s)	565	420
Density (g/cm ³)	3.67	4.51	5.29	4.88	4.5	8.3

Four Detectors Setup

Energy Resolution Comparison

Energy Resolution Comparison

2016/07/19

Energy Calibration

2016/07/19

Energy Calibration for Small LaBr3

Selection of Coincident Events

2016/07/19

Time Resolution

Summary and Forward Works

- Time Resolution of the system can indeed be improved by the use of LaBr3 detectors which have faster decay time.
- Low count rate and poor linearity of the small LaBr3 poses some difficulties in the experiment. I plan to replace it by a small square Nal(TI) detector.
- Currently, an experiment is running to measure the Lifetime of 81 keV state of 133Cs.
- Further Data Analysis will be carried out to determine measurement uncertainties which could include Time Walk effect, Background Contribution, Compton Scattering events etc.
- Correction of these effects could lead to a better System Time Resolution.

THANK YOU FOR LISTENING!!

The difference between stupidity and genius is that genius has its limits.

- Albert Einstein

Trach Beckens:

J&H BLESS YOU!!

Backup

Accidental Coincidence and Selection of Peak Region

The ratio of True coincident events to Accidental coincident events is calculated as;

$$\frac{N_0 = 7955Bq}{\tau = 107ns} \quad \frac{N_C}{N_A} = \frac{1}{2N_0\tau} = 587$$

Offline selection of coincident peaks is done using the following range,

$$R = (\mu - 1.645\sigma, \mu + 1.645\sigma)$$

Lifetime of 81 keV state using 2nd Transition

15

Time Resolution of the System

 An advantage is taken of the fact that the lifetime of the 1173 keV state of Co-60 is very short.

With the results shown in the picture on the left, Resolution = FWHM = 1.03ns

16