Di-photon production in ultraperipheral PbPb Collisions at 5.02 TeV using the 2015 CMS data

Beomgon Kim, Yongsun Kim (Korea University), Daniel Tapia Takaki (University of Kansas)

> CMS Group Meeting 16 May 2016

Modification

- The bugs in the macro have been fixed.
- $|\eta| < 1.444$ cut has been applied.
- In the Ecal Noise masking, the condition "phoSigmaIEtaIEta_2012 < 0.013" is added.
 - There is much noise at phoSigmaIEtaIEta_2012 > 0.013.
 - > With this condition, most of the peak around $\Delta \phi \sim 0$ is removed.
- "No jets" condition has been modified.
 - > When there is a jet close to photon($\Delta \phi < 0.5$ & $\Delta \eta < 0.5$), the jet is considered as it is not a jet actually.

- All data have been analyzed, corresponding to $L \sim 0.4 \text{ nb}^{-1}$
- Global Event Description (GED): particle flow algorithm
 - > Combines and links signals from the different sub-detectors.
 - Provides the optimal event description in form of a list of particles: electrons, muons, charged hadrons, photons, neutral hadrons
 - > pT is higher than 5 GeV/c
- Ecal Noise masking
 - (phoSigmaIEtaIEta_2012>=0.002) && (phoSigmaIEtaIEta_2012<0.013) && (pho_swissCrx<=0.9) && (abs(pho_seedTime)<=3)</p>
 - !((phoE3x3/phoE5x5 > 2/3-0.03 && phoE3x3/phoE5x5 < 2/3+0.03) && (phoE1x5/phoE5x5 > 1/3-0.03 && phoE1x5/e5x5 < 1/3+0.03) && (phoE2x5/phoE5x5 > 2/3-0.03 && phoE2x5/phoE5x5 < 2/3+0.03)): It was defined by Alex and photon group.</p>
- Photon isolation is not applied.

UPC Di-photon η Distribution

- The events have exactly 2 photons.
- Ecal noise masking applied.
- Most of photons are going through barrel.
 - Barrel has better energy resolution than endcap.
 - > It seems it will be better to give the cut $|\eta| < 1.444$

Without η cut: HLT_HIUPCL1DoubleEG2NotHF2: 284 HLT_HIUPCL1SingleEG5NotHF2: 331

With η cut: HLT_HIUPCL1DoubleEG2NotHF2: 278 HLT_HIUPCL1SingleEG5NotHF2: 317

- The events have exactly 2 photons.
- Ecal noise masking applied.
- $|\eta| < 1.444$

CM

• Good agreement between the two UPC triggers

HLT_HIUPCL1DoubleEG2NotHF2: 278 HLT_HIUPCL1SingleEG5NotHF2: 317

> Two photons Balanced events

UPC Di-photon $\Delta \varphi \& \Delta \eta$ Distribution

- The events have exactly 2 photons.
- Ecal noise masking applied.
- $|\eta| < 1.444$

UPC Di-photon $\Delta \varphi \& \Delta \eta$ Distribution

- The events have exactly 2 photons.
- Ecal noise masking applied.
- $|\eta| < 1.444$
- HFplus < 5 GeV & HFminus < 5 GeV

UPC Di-photon $\Delta \varphi \& \Delta \eta$ Distribution

- The events have exactly 2 photons.
- Ecal noise masking applied.
- $|\eta| < 1.444$
- HFplus < 5 GeV & HFminus < 5 GeV
- No jets

- The events have exactly 2 photons.
- Ecal noise masking applied.
- $|\eta| < 1.444$
- HFplus < 5 GeV & HFminus < 5 GeV
- $\Delta \phi > 2$

- The events have exactly 2 photons.
- Ecal noise masking applied.
- $|\eta| < 1.444$
- HFplus < 5 GeV & HFminus < 5 GeV
- $\Delta \phi > 2$

- Ecal noise masking applied.
- $|\eta| < 1.444$
- HFplus < 5 GeV & HFminus < 5 GeV
- $\Delta \phi > 2$
- No jets
- $m_{\gamma\gamma}$ from 0 GeV/c² to 60 GeV/c²

- The events have exactly 2 photons.
- Ecal noise masking applied.
- $|\eta| < 1.444$ ٠
- HFplus < 5 GeV & HFminus < 5 GeV ٠
- $\Delta \phi > 2$
- No jets
- $m_{\gamma\gamma}$ from 0 GeV/c² to 60 GeV/c²
- $p_{T,2}/p_{T,1} > 0.8$ 80

70

60

50

40

30

20

10

0

0.5

1.5

2.5

Di-photon p_T

2

3

3.5

- The events have exactly 2 photons.
- Ecal noise masking applied.
- $|\eta| < 1.444$
- HFplus < 5 GeV & HFminus < 5 GeV
- $\Delta \phi > 2$
- No jets
- $m_{\gamma\gamma}$ from 0 GeV/c² to 60 GeV/c²
- $p_{T,2}/p_{T,1} > 0.8$
- Di-photon $p_T < 0.5 \text{ GeV/c}$

- The events have exactly 2 photons.
- Ecal noise masking applied.
- $|\eta| < 1.444$
- HFplus < 5 GeV & HFminus < 5 GeV
- $\Delta \phi > 2$
- No jets
- $m_{\gamma\gamma}$ from 0 GeV/c² to 60 GeV/c²
- $p_{T,2}/p_{T,1} > 0.8$
- Di-photon $p_T < 1 \text{ GeV/c}$

- The events have exactly 2 photons.
- Ecal noise masking applied.
- $|\eta| < 1.444$
- HFplus < 5 GeV & HFminus < 5 GeV
- $\Delta \phi > 2$
- No jets
- $m_{\gamma\gamma}$ from 0 GeV/c² to 60 GeV/c²
- $p_{T,2}/p_{T,1} > 0.8$
- 1 GeV/c < Di-photon p_T < 2 GeV/c

- The events have exactly 2 photons.
- Ecal noise masking applied.
- $|\eta| < 1.444$
- HFplus < 5 GeV & HFminus < 5 GeV
- $\Delta \phi > 2$
- No jets
- $m_{\gamma\gamma}$ from 0 GeV/c² to 60 GeV/c²
- $p_{T,2}/p_{T,1} > 0.8$
- Di-photon $p_T > 2 \text{ GeV/c}$

- Study ZDC signals to study events with no neutrons on both sides of the interaction point and events with low neutron activity.
- Study MC signals.

- The events have exactly 2 photons.
- Ecal noise masking applied.
- $|\eta| < 1.444$
- HFplus < 5 GeV & HFminus < 5 GeV
- $\Delta \phi > 2$
- No jets
- $m_{\gamma\gamma}$ from 0 GeV/c² to 60 GeV/c²

- The events have exactly 2 photons.
- Ecal noise masking applied.
- $|\eta| < 1.444$
- HFplus < 5 GeV & HFminus < 5 GeV
- $\Delta \phi > 2$
- No jets
- $m_{\gamma\gamma}$ from 0 GeV/c² to 60 GeV/c²
- $p_{T,2}/p_{T,1} > 0.8$

- The events have exactly 2 photons.
- Ecal noise masking applied.
- $|\eta| < 1.444$
- HFplus < 5 GeV & HFminus < 5 GeV
- $\Delta \phi > 2$
- No jets
- $m_{\gamma\gamma}$ from 0 GeV/c² to 60 GeV/c²
- $p_{T,2}/p_{T,1} > 0.8$

HLT_HIUPCL1SingleEG5NotHF2: 126

Korea Univ. Nuclear Physics Lab.

- The events have exactly 2 photons.
- Ecal noise masking applied.
- $|\eta| < 1.444$
- HFplus < 5 GeV & HFminus < 5 GeV
- $\Delta \phi > 2$
- No jets
- $m_{\gamma\gamma}$ from 0 GeV/c² to 60 GeV/c²
- $p_{T,2}/p_{T,1} > 0.8$

