5γ+1γ analysis with Barrels & Study of Barrels with 1γ

Kim, JunLee Korea Univ. Collaboration Meeting @ 6th Jan. 2017

$K_L \to \pi^0 \pi^0 \pi^0$ Reconstruction Using 5 γ on CsI and 1γ on Barrel

- $\mathbf{K_L} \to \pi^0 \pi^0 \pi^0$ decay samples with 5**Y**s on CsI and 1**Y** on Barrel
- Reconstruction of $2\pi^0$ from 4γ s on CsI
- 1γ Reconstruction from hit information of Barrel (timing and Module ID)
- Reconstruction of the last π^0 from γ on CsI and γ on Barrel

Vertex estimation from $2\pi^0$ Reconstruction

- Behavior of Vertex Chi2 of 5 \mathbf{Y} is same as g4
- Chi2 Cut of 5Y is not so effective as g4
 - 90% Wrong pair with 5th Y

	Wrong pair ratio without chi2 cut	Wrong pair ratio after 1 st chi2 cut(<4)			
4Υ	20%	11%			
5Υ	50%	47%			
20170106					

Cuts

- Dalitz Cut
 - Graphical cut about phase space of three body decay

Cut Variables	Selected region
Klong Vertex	2500 <vtz<5000 [mm]<="" td=""></vtz<5000>
Gamma Energy on CSI	100 <e<2000 [mev]<="" td=""></e<2000>
Distances btw gammas	D>175 [mm]
Fiducial distance	150 <r<900[mm]< td=""></r<900[mm]<>
Chi2_1st	Chi2<4
Chi2_2nd	Chi2>10
ShapeChi2	Chi2<10
Pi0 mass	Mass difference<5MeV
Difference btw 2pi0 mass	Mass difference<5MeV
Klong Pt	Pt<40[MeV/c]
Dalitz Cut	

20170106

Match of Υ

- Calculation of incident position of γs
 - IncidentPosition GammaPos
- One to one match for 5γ
 - Match Ratio
 - Match for checking status of π^0 pairing

Conditions	Match Ratio	Wrong Pair
No cut	79%	50%
Minimum Cut	97.7%	35%
Min. Cut + Pt	98.0%	23%
All Cuts	98.2%	6%

Veto Detectors

Veto Conditions			Its						
Detector	Time window	threshold	Ъл 10 ⁵ –			Red : A	polying	all cuts	events
CV	30ns	0.25 [MeV]	# =			Black : A	All cuts	+ Veto	
NCC	40ns	2 [MeV]	104					DecayN	/lode Info.
CC03	40ns	3 [MeV]	Ē	_				1 K _L –	$\rightarrow \pi \mu^+ v_{\mu}$
BCV	50ns	0.5 [MeV]	10 ³					2 K _L –	$\rightarrow \pi e^+ v_e$
OEV	70ns	2 [MeV]						4 ĸ լ -	→ π π•π•
BPCV	30ns	2 [MeV]	10 ²				1	🗖 .	
			0	5	10	15	20	Deca	ay Mode
• After applying all Cuts, $- \sim 1\%$ Dalitz Decay Event from $\kappa_{L} \rightarrow \pi^{0}\pi^{0}\pi^{0}$ remain. $\beta^{0.8}$							*		
• After using Detector Veto, $\frac{2}{2}$ Black : Ru Blue : Ru MC : KL3					ack : Run62 ue : Run64 C : KL3pi0G	enMC	*	#Events / #Events \	After Veto / With no Veto
- Only $\mathbf{K}_{\mathbf{L}} \rightarrow \pi \pi \pi \pi$ events					NCC	CC03	BCV	OEV	BPCV

remain. (Decay Mode = 3)¹⁷⁰¹⁰⁶

Variables after all cut & veto

K_L Vertex Time

- Estimation of decay time of K_L using Barrel Detector and CsI Detector independently.
 - With clean γ going to Barrel

Spectra. & Fitting of Vertex Time Difference

Entries	27426	Entries	32418
Mean	11.36	Mean	10.86
RMS	1.953	RMS	1.298
χ^2 / ndf	12.55 / 23	χ^2 / ndf	23.29 / 23
Prob	0.961	Prob	0.4437
Constant	555.9 ± 6.8	Constant	1100 ± 10.2
Mean	11.01 ± 0.04	Mean	10.71 ± 0.01
Sigma	1.539 ± 0.067	Sigma	1.108 ± 0.019
Entries	31757	Entries	26230
Mean	10.94	Mean	10.99

Mean	10.94	Mean	10.99
RMS	1.181	RMS	1.139
χ² / ndf	32.79 / 23	χ^2 / ndf	39.13 / 23
Prob	0.08484	Prob	0.0192
Constant	1213 ± 10.9	Constant	1046 ± 10.1
Mean	10.74 ± 0.01	Mean	10.79 ± 0.01
Sigma	0.9781 ± 0.0133	Sigma	0.9535 ± 0.0133

- Vertex Time Difference = $T_{VTZ_B} T_{VTZ_c}$
- Fitted with Gaussian
 - Mean : Offset
 - Sigma : Time Resolution affected by CsI and Barrel
- All modules are integrated
- Deposited energy on Barrel affects Vertex Time Difference distribution
- $T_{VTZ_{B}} T_{VTZ_{C}} = Offset$ $\delta(Offset) = \sqrt{\delta T_{VTZ_{B}}^{2} + \delta T_{VTZ_{C}}^{2}}$

Module consistency

 Evaluation of Barrel Calibration from Vertex Time Difference distributions

Resolution of Vertex Time Difference & Evaluation of Barrel Time Resolution

- P₀ presents resolution from other terms(Mainly Csl)
 - In Run62, P₀ is higher than other data set.
- P₁ presents resolution of Barrel
 - In Run69 IB, P_1 is better than other data set(MB).

Vertex Time Difference at g6 Analysis

- As 5y+1y analysis, Vertex time differences could be calculated at g6 analysis.
 - Gamma which has highest energy among 6 gammas is selected as 6th

Highest energy

$$T_{VTZ_B}$$
- T_{VTZ_c} =Offset
 T_{VTZ_B} - T_{VTZ_c} = Offset

Comparison with MC Vertex Time Difference

Time Resolution with regard to

Barrel Energy Deposit

20170106

Deposited energy & Incident gamma energy

Comparison with MC Sampling Fraction

- Sampling Fraction is inconsistent between MC and data for IMB and IB
 - We are trying to understand the reason.
- In GsimE14CBAR.cc of E14lib, there is no definition of material of reflectors(TiO₂)

Summary

• $5\mathbf{v}+1\mathbf{Y}$ analysis is done with ~6% wrong pair of $2\pi^0$

- We can choose gamma incident barrel events

- Time Resolution of Barrel with the function of energy deposit is firstly evaluated
 - The energy-independent term of Barrel time resolution is ignored

$$\sigma_{\text{Barrel}} = \mathbf{P}_1 + \frac{\mathbf{P}_2}{\sqrt{\mathbf{E}_{\text{dep}}}}$$

- We can check Quality of Barrel Calibrations through 6th gamma.
- Sampling Fractions are inconsistent between MC and Data
 - Effect of reflectors? Other reason?

Back up

Online Histogram

Dalitz Plots in g6

6g Vertex Time difference

OEV veto efficiency

All veto applied / All veto except OEV

• In MC without Barrel resolution,

OEV veto efficiency

Single OEV veto

Entrie:

Moan ĸ

5099

• In MC without Barrel resolution,

0.2

SFHitZ1

P.O.T. (Min. Bias)

With 3.6e7 #KL = 2e14 POT

- Run62:1.39e18
 - /300 = 4.63e15 -> 8.33e8
 - # KL3pi0 reconstructed : 9110
- Run64:4.38e18
 - /300 = 1.46e16 -> 2.63e9
 - # KL3pi0 reconstructed : 31347 (9941)
- Run69:5.21e17
 - /70 = 7.44e15 -> 1.34e9
 - # KL3pi0 reconstructed : 12799 (7950)
- MC Generation
 - KL3pi0 Gen : 1e6*2000
 - #KL ~ 5.13*1e6*2000 = 1.03e10
 - # KL3pi0 reconstructed : 132659 (10729)

Global Time shift in Run69

