pPb & pp J/ψ TnP Status

KiSoo Lee

pPb vs. pp information

٠

•

• CMSSW: CMSSW_5_3_20

- Data
 - DAS: /PAMuon/HIRun2013-PromptReco-v1/RECO
 - DAS: /PAMuon/HIRun2013-28Sep2013-v1/RECO
 - GT: GR_P_V43F:All
 - GT: GR_P_V43D:All

MC

- DAS: /JpsiWithFSR_tuneD67T_5TeV02/pAWinter13DR53Xpa_1st_run_STARTHI53_v27_ext1-v1/GEN-SIM-RECO

 DAS: /JpsiWithFSR_tuneD67T_5TeV02/pAWinter13DR53Xpa_2nd_run_STARTHI53_v27_ext1-v1/GEN-SIM-RECO

- GT: START53_V27:All

DoubleMu: HLT_PAL1DoubleMuOpen_v* Tag: HLT_PAMu3_v* CMSSW: CMSSW_7_5_8_patch3

• Data

- DAS: /SingleMuLowPt/Run2015E-PromptReco-v1/ AOD

- GT: 75X_dataRun2_Prompt_ppAt5TeV_v0

MC

- DAS: /JpsiMM_5p02TeV_TuneCUETP8M1/ HINppWinter16DR-75X_mcRun2_asymptotic_ppAt5 TeV_v3-v1/AODSIM
- GT: 75X_mcRun2_asymtotic_ppAt5TeV_v3

Data

DoubleMu: HLT_HIL1DoubleMu0_v* Tag: HLT_HIL2Mu3_NHitQ10_v* MC DoubleMu: HLT_HIL1DoubleMu0ForPPRef_v* Tag: HLT_HIL2Mu3_NHitQ10ForPPRef_v*

Muon eta bins $0 < |\eta| < 0.9$ $0.9 < |\eta| < 1.2$ $1.2 < |\eta| < 1.6$ $1.6 < |\eta| < 2.1$ $2.1 < |\eta| < 2.4$

 $1.2 \leq |\eta| < 2.1: p_T \geq -\frac{1.0}{0.9} \times |\eta| + 1.2 \times \frac{1.0}{0.9} + 2.6$

 $|\eta| < 1.2: p_T \ge 3.3$

Acceptance

Trigger

$$2.1 \le |\eta| < 2.4; p_T \ge 1.3$$

KiSoo Lee

TnP uncertainty method

- Followed the same procedure in AN-15-028
- Variations
 - 1. Use two Gaussian instead of CrystalBall+Gaussian as signal function
 - 2. Use 1st order Chebyshev polynomial instead of exponential as background function
 - 3. Use Mu7 instead of Mu3 as single muon trigger
 - 4. Fit more tight mass region(2.9~3.3 GeV)
- Maximum data-to-MC ratio variation for each p_T bin quoted as systematic uncertainty on the scale factor
- 2 New scale factors are calculated by re-fitting the points shifted up and down by systematic uncertainty
- Maximum variation of di-muon efficiency is systematic part of TnP uncertainty(σ^{syst})
- 100 Toy MCs are generated by randomly moving SF points within 1 σ
- RMS of the di-muon efficiencies from Toy SF is statistic part of TnP uncertainty(σ^{stat})

$$\sigma_{TnP} = \sqrt{\left(\sigma_{TnP}^{stat}\right)^2 + \left(\sigma_{TnP}^{syst}\right)^2}$$

pPb scale factors

Issue 1. reduced pp statistics

Tag-Probe Mass (GeV

- For the pp data, mu3 triggered events are reduced due to pre-scale
- To keep those events 'OR' triggers are tried
- 'OR' trigger: L2Mu3 or L2Mu5 or L2Mu7

Improved fitting with 'OR' trigger

KiSoo Lee

6

Issue 2. Background function

- Current nominal background is exponential function
- 2nd order Chebyshev polynomial was suggested to nominal background function
- Fit probability is compared to find proper background function
- Fit probability: probability that an observed chi2 exceeds the value chi2 by chance, even for a correct model

pt range	expo pass	expo fail	expo all	pol pass	pol fail	pol all
etabin1						
3.3 < pt < 3.8	0.0021	0.0565	0.1749	0.0484	0.1704	0.1351
3.8 < pt < 4.3	0.4397	0.4069	0.4915	0.0013	0.3109	0.3813
4.3 < pt < 5.0	0	0.0764	0.1391	0.1073	0.1127	0.0866
5.0 < pt < 6.0	0.3275	0.0197	0.0744	0	0.0383	0.0283
6.0 < pt < 7.0	0	0.6049	0.483	0	0.4029	0.3460
7.0 < pt < 8.0	0	0.574	0.2194	0.0008	0.3838	0.1978
8.0 < pt < 9.0	0	0.0744	0.0491	0	0.0357	0.0417
9.0 < pt < 10.0	0	0.2538	0.4771	0	0.1472	0.0794
10.0 < pt < 30.0	0	0.4795	0.3938	0.0352	0.3218	0.3656

Summary

- 'OR' L2 trigger used to keep events(fitting quality is improved)
 - → Use 'OR' trigger as nominal
- 2nd order Chebyshev polynomial background is suggested
- Exponential background have larger fitting probability
 - \rightarrow Keep using exponential background as nominal
- New ToyMC needed
- New variation with 'OR' trigger is ongoing

back up

'OR' trigger

- For the pp data, mu3 triggered events are reduced due to pre-scale
- To keep those events 'OR' triggers are tried

10