Analysis of ¹⁴⁰Te \rightarrow ¹⁴⁰I β - Decay Nuclear Structure Jan. 29. 2016. Fri.

Byul Moon

Single γ -ray Spectrum

EURICA Efficiency

Calibration

Background elimination

Search Time Decaying γ -Peaks

Ε _γ (keV)	Count	Ι _γ (%)	Ei (keV)	E _f (keV)	Coincidences (keV) (From total γ-γ spectrum)
739	4207.35	100.00	925	185	51, 134, 185
341	3328.32	79.11	341	0	583
102	2880.79	68.47	108	6	197, 234, 351, 818, 1047
197	2850.59	67.75	925	728	102, 620, 722
875	2797.22	66.48	925	51	51
234	2627.02	62.44	341	108	56, 102, 583
51	1977.64	47.00	51	0	56, 134, 542, 739, 1067
352	1955.41	46.48	458	108	56, 102
722	1651.54	39.25	728	6	197
620	1589.86	37.79	728	108	102, 197
185	1548.05	36.79	185	0	739, 1067
142	1442.13	34.28	925	783	783
134	1416.08	33.66	185	51	51, 740, 1067
818	938.24	22.30	925	108	56, 102
1067	924.96	21.98	1252	185	51, 134, 185
783	742.17	17.64	783	0	142
1601	384.46	9.14	1786	185	51, 134, 185
6	336.57	8.00	6	0	-
583	219.84	5.23	925	341	102, 234, 341
56	203.19	4.83	108	51	51, 234, 351, 818

Gate : 0 - 400ms from the single γ spectrum Condition : Background elimination and efficiency calibration

Experimental Setup

Total β -ray Estimation

Total β -ray Estimation

$$\frac{dN_{\beta}}{dt} = \lambda_1 N_0 e^{-\lambda_1 t}$$

$$N_{\beta} = \lambda_1 N_0 \int_0^{4000} e^{-\lambda_1 t} = 364051$$

$$X \ 1.5 \ \text{counts}$$

$$N_{\beta} = 546076 \approx 5.5 \times 10^5$$

Total β particles from the decay of ¹⁴⁰Te : 5.5x10⁵

Energy	F	Count	Internal Conversion				Effect of	Total Count	Lo-	$\log ft$
Level	γ		M1 α	Count	Ε2 <i>α</i>	Count	Downstream \mathbf{E}_{γ}		Ιβ	lugjt
1786	1601	843.27	-	-	-	-	_	843.27	0.15	6.8
1252	1067	1887.85	-	-	-	-	-	1887.85	0.34	6.6
	142	3024.7	0.282	3876.77	0.513	4575.31				
925 925 7 8 8	197	6631.17	0.115	7393.75	0.164	7718.68		33475.34	6.09	5.5
	583	367.219	-	-	-	-				
	739	10428.3	-	-	-	-	_			
	818	2221.05	-	-	-	-				
	874	8164.78	-	-	-	-				
783	783	1802.09	-	-	-	-	142 keV	~ 0 (-2773.22)	-	-
	542	565.219	-	-	-	-		5961.229	1.08	6.3
728 6 7	620	7728.66	-	-	-	-	197 keV			
	722	5061.1	-	-	-	-				
458	351	3636.74	-	-	-	-	_	3636.74	0.66	6.6
241	234	6868.92	-	-	-	-	592 koV	14060 091	V	
341	341	8468.28	-	583 K0	303 KEV	14909.981	Λ			
195	134	3180.73	0.331	4233.55	0.629	5181.41	542, 739, 1067,	~ 0		
183	185	3449.7	0.136	3918.86	0.204	4153.44	1601 keV	(-4389.789)	-	-
109	56	1166.44	4.03	5867.19	14.3	17846.53	234, 351, 620,	10041 4	X	
108	102	8659.03	0.715	14850.24	1.65	22946.43	818 keV	12241.4		
51	51	4980.6	5.29	31327.97	20.3	106086.78	56, 134, 874 keV	74894.06	2	X
6	6	-	-	-	_	-	102, 722 keV	-	-	-

From the single γ spectrum with 4096 ms / ¹⁴⁰Te ions : 2.2 x 10⁶ / Number of β particles : 5.5 x 10⁵ Condition : Background elimination and efficiency calibration

1st Scenario

Energy	Έγ	Count	Internal Conversion		Effect of Downstream	Total	Iβ-	$\log ft$	Τπ
Level (keV)	(keV)		Type (<i>α</i>)	Count	\mathbf{E}_{γ} (keV)	Count	(%)	logjt	J
1786	1601	843.27	M1, E2	-	-	843.27	0.15	6.8	0-
1252	1067	1887.85	M1, E2	_	_	1887.85	0.34	6.6	0-
925	142	3024.7	E2 (0.513)	4575.31		30586.77	5.56	5.5	1+
	197	6631.17	E1 (0.03)	6830.11					
	583	367.219	M2	-					
	739	10428.3	E1	-	_				
	818	2221.05	M1	-					
	874	8164.78	E1	-					
783	783	1802.09	M2	-	142	~ 0 (-2773.22)	-	-	2+
	542	565.219	E2	_		5636.30	1.02	6.3	0-
728	620	7728.66	M1	-	197				
	722	5061.1	E2	-					
458	351	3636.74	E2	-	-	3636.74	0.66	6.6	0-
2/1	234	6868.92	M1	-	592	14060 081	77 5.56 5.5 1^+ 22) $ 2^+$ 0 1.02 6.3 $0^ '4$ 0.66 6.6 $0^ 81$ X $2^ 89$) $ 1^ 4$ X 2^-	7 -	
341	341	8468.28	M1	-	565	14909.901	Λ		<i>ــــــــــــــــــــــــــــــــــــ</i>
185	134	3180.73	E2 (2.63)	5181.41	542 730 1067 1601	~ 0			1-
165	185	3449.7	E2 (0.204)	4153.44	542, 759, 1007, 1001	(-4389.789)	-	-	1
108	56	1166.44	E2 (14.3)	17846.53	224 251 620 919	12241 4	V		? -
	102	8659.03	M1 (0.715)	14850.24	234, 331, 020, 818	12241.4		Δ	
51	51	4980.6	E2 (20.3)	106086.78	56, 134, 874	74894.06 X		X	1-
6	6	-	-	_	102, 722	-	-	-	2-

16.01.28. 7

The Level Scheme of 1st Scenario

Future Plan

- Find out more coincident E_{γ} over 1 MeV.
- After access to the raw data, analyze the β spectrum to find peaks of internal conversions.
- After access to the raw data, find the total amount of β particles after the elimination of the background and the efficiency calibration of the 2-D matrix.
- After access to the raw data, find strong peaks to confirm the 1+ state above 2 MeV with more than 15 % of the β branch ratio.
- After access to the raw data, analyze the angular correlation to find the exact transition type.
- Confirm all energy state with correct J^{π} , β branching ratio and log ft.
- Make the reasonable scenario with physics.