Muon L1/HLT preparation

Yongsun Kim

Korea-France CMS HI collaboration

25 September 2015

2015 PbPb collision plan

- PbPb runs, week 47-50
 - $\sqrt{s_{_{\rm NN}}} = 5.02 \text{ TeV}$
 - Bunch spacing: 100-200 ns
 - Pileup: ~a percent, expect 0.7% (similar to the 2011 data taking)
 - Peak collision rate: ~20-30 kHz (expected β* was recently changed, might be re-discussed)
- "Reference" pp data at $\sqrt{s} = 5.02$ TeV:
 - To happen either right before or after the PbPb run, from the PbPb time budget
- Release to be used by Tier-0: 7_5_X

Krisztian

Current situation

In 2011, L1 DoubleMuOpen played the key role

In 2015, we have

- **Doubled energy**
- 10 15 times higher rate

What should we do?

- Tighten L1 quality bits
- **Tighten HLT filters**
- Prioritize paths for prescale order

Rate limitations. L1:

- Pixel:
 - Dedicated PbPb firmware exists, tests are not successful so far
 - pp firmware could provide
 - With 25 µs hold-off: 3 kHz with 8% or 10 kHz with 30% dead time
 - With 10 µs hold-off: 3% 10% (less tested)
- Tracker: read-out in VR in 10-bit FED mode: ~10 kHz
- ECAL: ~12 kHz

\rightarrow L1 limit: ~3 - 10 kHz

Rate limitations, HLT:

- Driven by available disk space: ~1.5 PB can be archived at the FNAL T1
 - No other tape archive storage at any other T1
 - The 1.5 PB is for RAW + prompt RECO + AOD + prompt Skim
 - Vanderbilt T2 to store prompt RECO + AOD + prompt Skim, but no RAW (~900 TB of disk space preserved for this)
 - MIT and SPRACE could also host ~100-200 TB of AOD or prompt Skim
- Preliminary data tier strategy of the 1.5 PB space:
 - Write out AOD instead of prompt RECO, but also keep some prompt RECO for detailed data quality/reconstruction algorithm checks
 - \rightarrow ~850 TB of RAW, ~620 TB of AOD and ~70 TB of prompt RECO

→ Estimated HLT bandwidth limit: ~250 Hz

- Estimate being refined using preliminary PDs, see later Krisztian

<u>Underline</u> : un-prescaled path	
Contemporal States Contemporal States and a state of the state of the states of th	<dimuon central=""> Fed by L1_DoubleMu0_Cent0-30 L3_DoubleMu0_"cut" "cut" depends on bandwidth condition</dimuon>
<pre> <ewq> Fed by exclusive L1 seeds </ewq></pre> HLT_L2(3)Mu20 24(6) Hz HLT_L2_DoubleMu10 < 1 Hz	<pre><t&p> Fed by exclusive L1 seeds L2(3)_MuX_NHitQY 4 paths : X = 3,5,7,15 evenly distributed Y = # of hit filter, 10-15</t&p></pre>

CMS

<u>Underline</u> : un-prescaled path

<Dimuon Peripheral>
Fed by L1_DoubleMu0_Cent30-100

L2_DoubleMu0_NHitQ_18 Hz + loose paths <Dimuon Central>
Fed by L1_DoubleMu0_Cent0-30

<u>L3_DoubleMu0_"cut"</u> "cut" depends on bandwidth condition

CM:

 Due to the HLT bandwidth, we can not use a simple LX_DoubleMu0 triggers in raw

- Centrality dependent cut and pre-scale are implemented
- 30%-100% Peripheral → L2 paths to be un-prescaled
- 0-30% Central → L3 paths + further filter to be un-prescaled

<u>Underline</u> : un-prescaled path

<Dimuon Peripheral>
Fed by L1_DoubleMu0_Cent30-100

L2_DoubleMu0_NHitQ_18 Hz + loose paths <Dimuon Central>
Fed by L1_DoubleMu0_Cent0-30

<u>L3_DoubleMu0_"cut"</u> "cut" depends on bandwidth condition

CM:

 Due to the HLT bandwidth, we can not use a simple LX_DoubleMu0 triggers in raw

- Centrality dependent cut and pre-scale are implemented
- 30%-100% Peripheral → L2 paths to be un-prescaled
- 0-30% Central → L3 paths + further filter to be un-prescaled

<Dimuon Central>
Fed by L1_DoubleMu0_Cent0-30

<u>L3_DoubleMu0_"cut"</u> "cut" depends on bandwidth condition

an not use a simple LX_DoubleMu0

e-scale are implemented is to be un-prescaled is + further filter to be un-prescaled

CM:

Single Muon triggers

(a) Very high p_T for W and Z
→ No extra filter above L2(L3) algorithm
(b) p_T of 3, 5, 7, 15 GeV for T&P
→ Very tight cuts (e.g. # of hits = 10 for L2)

Single Muon triggers

(a) Very high p_T for W and Z
→ No extra filter above L2(L3) algorithm
(b) p_T of 3, 5, 7, 15 GeV for T&P
→ Very tight cuts (e.g. # of hits = 10 for L2)

Rate estimation

- Extrapolation from 2011 run
 - └─ Detector condition factor : [Run2]/[Run1] of HYDJET
 - Two upgrades in detector & HighQuality algo.
 - Huge fake suppression for high_pt_single and double
 - └ Collision Energy factor

x1.3 for single and x2 for double (conservative)

- Caveat
 - └ This estimation seems to be very conservative. Because the estimation is always higher than HYDJET results while 13TeV pp trigger rate is less than PYTHIA by factor of ~2

		Run1 Condition	Run1 Cond.+ HighQ	Run 2 Cond. (HighQ)	
	Collision rate :	Scaled by 1.6kHz	Scaled by 1.6kHz	Scaled by 1.6kHz	Run2 / Run 1 Ratio
Single Mu	L1, 3	112	65	53	0.47
	L1, 7	39	19	7	0.18
	L2, 3	39	38	26	0.67
	L2, 3 && NHitQ	29	28	25	0.86
	L2, 7	11	10	4.4	0.40
	L3, 3	26	25	11.2	0.43
Double Mu	L1, 0	37	24 (*)	5.8	0 16
	HLT_L1, 0	6	6	5.8	0.97
	L2, 0	15	6	4.9	0.33
	L3, 0	5.8	3	0.91	0.16

To-do items after QM

- Rate correction factor
 - └─ Cross-check with pp real data 13TeV and PYTHIA MinBias
 - ∟ Jaebum, Bumgon, Émilien
- Estimation of J/psi's in T&P channels
 - ⊢ How much rate should we assign for T&P?
 - ⊢ Prashant (BARC)
- Optimization of <u>#NHitQ</u> filter in L2 and L3
 - ∟ Chris (UMD), Songkyo
- Exact(!) estimation of PD data size and pre-scale determination
 L Jason (UIC), Ian (Rutgers)
- Maintenance of DQM machinery
 - ∟ Mihee, Kisoo

