# One example of the vertex finding



## Result



# Vertex finding

Genie Jhang 2015. 12. 2

### Parameters

- Target size: (x, y) = (30, 40) [mm]
- Target center (Sn): (x, y, z) = (0, -213.3, -8.9) [mm]
- Target sides (Sn):
  - $(x_{Min}, y_{Min}, x_{Max}, y_{Max}) = (-15, -233.3, 15, -193.3) [mm]$



# Track selection method

• Find crossing points (x, y) at z=300 and 800 planes.



# Track selection method

• The two points  $(x_1, y_1)$  and  $(x_2, y_2)$  must satisfy the following criteria.



- 1. Both  $y_1$  and  $y_2$  must be above  $y_{Min}$ .
- 2. The slope should be positive.



- 1. Both  $y_1$  and  $y_2$  must be below  $y_{Max}$ .
- 2. The slope should be negative.

# Track selection method

• The two points  $(x_1, y_1)$  and  $(x_2, y_2)$  must satisfy the following criteria.



- 1. Both  $x_1$  and  $x_2$  must be above  $x_{Min}$ .
- 2. The slope should be positive.

For tracks going to beam-right



- 1. Both  $x_1$  and  $x_2$  must be below  $x_{Max}$ .
- 2. The slope should be negative.

# Vertex finding method

- For the tracks satisfying the criteria before, find the crossing points on the plane z = 10 [mm].
- Suppose we have three tracks crossing the plane.



### z = 10 [mm] plane

# Vertex finding method

1. Find the average point of all the points crossing the plane.

$$x_{\text{avg}} = \sum x_i / N$$
  $y_{\text{avg}} = \sum y_i / N$ 



#### z = 10 [mm] plane

# Vertex finding method

- 2. Calculate the sum of the distances between the average point to each point.  $D = \sum d_i$
- 3. Scan z from 10 to -500 [mm] to find the minimum D.



### z = 10 [mm] plane