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Abstract. In the first part of this contribution we discuss the problem of the initial con-
ditions for the evolution of double parton distribution functions (PDFs). We show that
one can construct a framework based on the expansion in terms of the Dirichlet functions
in which both single and double PDFs satisfy momentum sum rules. In the second part,
we propose how to include the transverse momentum dependence for the double par-
ton distribution functions using the extension of the Kimber-Martin-Ryskin framework
previously applied to the single PDFs.

1 Introduction

Hard processes in hadron collisions are usually described by the collinear factorization. This factor-
ization can be schematically written as follows

dσ = D f
1 (x1,Q2) ⊗ σ̂ f f ′ (ŝ,Q2) ⊗ D f ′

1 (x′1,Q
2) + O(1/Q2) , (1)

where D f
1 (x,Q2) is the standard non-perturbative collinear PDF for the partons of type f (and simiu-

larly for f ′) and σ̂ f f ′ (ŝ,Q2) is the partonic cross section which can be evaluated perturbatively. The
hard scale Q2 could be a heavy quark mass, transverse energy of a jet or invariant mass of the Drell-
Yan pair. The above factorization formula is appropriate for the description of inclusive cross sections
for single hard processes. In the new regime of high energies, such as those probed at Tevatron and
more recently at the Large Hadron Collider, multiple scatterings occur more frequently. This is related
to the fact that at these high energies the parton luminosities increase rapidly with the decreasing frac-
tions of the longitudinal momenta. For the description of the processes in which two pairs of partons
scatter simultaneously in one hadronic encounter, the following formula is usually utilized

dσ = D f1 f2
2 (x1, x2; Q2

1,Q
2
2; qT ) ⊗ σ̂ f1 f ′1 (ŝ1,Q2

1) ⊗ σ̂ f2 f ′2 (ŝ2,Q2
2) ⊗ D f ′1 f ′2

2 (x′1, x
′
2; Q2

1,Q
2
2; qT ) , (2)

where D f1 f2
2 (x1, x2; Q2

1,Q
2
2; qT ) is the double collinear PDF. The formula in Eq. (2) is meant to repre-

sent the scattering of two pairs of partons, with the hard scattering described by the two hard parton
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cross sections at hard scales Q1 and Q2. The additional scale qT is the relative transverse momentum
of the two partons. The above formula is widely used in the phenomenology of the double parton
scattering, though strictly speaking it has not yet been rigorously proven. Important steps towards the
proof for the double Drell-Yan process have been provided in [1].

The single PDFs are non-perturbative quantities, but their evolution with the hard scale can be
described by the DGLAP evolution equations, with the splitting functions which can be calculated
perturbatively. The double PDFs also obey the evolution equations which have in the leading loga-
rithmic approximation the following DGLAP-like form, see e.g. [2] for more details,

∂tD f1 f2 (x1, x2; t) =
∑

f ′

∫ 1−x2

0
duK f1 f ′ (x1, u, t) D f ′ f2 (u, x2; t)

+
∑

f ′

∫ 1−x1

0
duK f2 f ′ (x2, u, t) D f1 f ′ (x1, u; t) +

∑
f ′
KR

f ′→ f1 f2 (x1, x2, t)D f ′ (x1 + x2; t) . (3)

Here, we have used the notation in which D f1 f2 (x1, x2; t) denotes the double PDF which depends on
two equal hard scales Q1 = Q2 = Q and the evolution variable is defined as t = ln Q2/Q2

0. Also,
the above evolution equations are defined for the case of zero qT momentum. The kernels K are
the Altarelli-Parisi splitting functions, with KR being the real part of the splitting function only. The
physical interpretation of these evolution equations is as follows: the first two terms describe the sit-
uation where one of the two partons undergoes the collinear splitting, and the third term describes the
situation when one parton collinearly splits into two. The first two terms are homogeneous contribu-
tion, whereas the third, splitting term, is the non-homogeneous contribution since it depends on the
single parton distribution function. The above equations were first discussed in the context of the jet
structure, and later on derived for the the parton distribution functions.

2 Momentum sum rules

The evolution equations (3) need to be solved simultaneously with the DGLAP equations for the
single parton distirbution functions. In addition, there are sum rules which must be obeyed by the
solutions to the evolution equations for both the double and single PDFs. There are known sum rules
for the single parton distribution functions like the momentum sum rule and the quark number sum
rule. The corresponding momentum sum rule for the double PDFs reads

∑
f1

∫ 1−x2

0
dx1 x1

D f1 f2 (x1, x2; t)
D f2 (x2; t)

= 1 − x2 . (4)

The integrand in this sum rule is an expression of the conditional probability to find the parton f1 with
the momentum fraction x1 while keeping the second parton f2 with momentum x2 fixed. The total
momentum fraction carried by the partons f1 under this condition is equal to 1 − x2. In the similar
manner, one can construct the quark number sum rule for the double PDFs [2].

The important feature of the evolution equations is that they conserve the sum rules. If the PDFs
satisfy the sum rules at certain scale t0, then they will also satisfy these sum rules at higher scale t1
after the evolution. The presence of the splitting term in the evolution equation for the double PDFs
is essential to guarantee this property.
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2.1 Initial conditions

Thus for the practical purposes, in phenomenological applications one needs to impose suitable initial
conditions both for the single and double PDFs simultaneously. At the same time, the momentum sum
rules should be also satisfied. First attempts to resolve this problem were given in [2]. In reference
[3] another solution was proposed which, however, did not have the symmetry with respect to the
exchange of the partons. Another proposal was given in [4] where the construction was based on the
Dirichlet distributions. The obtained solution was positive definite and symmetric with respect to the
exchange of the two partons.

The framework of reference [4] rests on the observation that the natural functions which obey the
sum rules for the single PDFs and double PDFs are the Dirichlet distributions. Let us consider the
following form for the single and double PDFs,

D(x) = N1x−α(1 − x)β , D(x1, x2) = N2x−α̃1 x−α̃2 (1 − x1 − x2)β̃ . (5)

One can rewrite them using the Mellin transform,

D̃(n) =

∫ 1

0
dx xn−1 D(x) , D̃(n1, n2) =

∫ 1

0
dx1 xn1−1

1

∫ 1−x1

0
dx2 xn2−1

2 D(x1, x2) , (6)

to obtain

D̃(n) = N1
Γ(n − α)Γ(β + 1)
Γ(n − α + β + 1)

, D̃(n1, n2) = N2
Γ(n1 − α̃)Γ(n2 − α̃)Γ(β̃ + 1)

Γ(n1 + n2 − 2α̃ + β̃ + 1)
. (7)

The momentum sum rule in the Mellin space can be rewritten as:

D̃(n1, 2) = D̃(n1) − D̃(n1 + 1) , (8)

and similarily for the second parton. It can be easily seen, using some basic properties of the Beta
function that the form for the single and double PDFs satisfies the above momentum sum rule. In
particular the powers of the two distributions need to satisfy

α = α̃, β̃ = β + α − 1 , (9)

with the normalizations also being uniquely defined. We see therefore that the small x powers for the
single and double PDFs are the same. On the other hand, the large x power of the correlating factor
of the double PDF is related to the sum of the small and large x powers of the single PDF.

In practice, the parametrizations for the PDFs need to be more complicated than the single Dirich-
let distribution, nevertheless the framework can be generalized to the sum of arbitrary number of such
terms. In such a case, for each term in the series there would be a condition similar to Eq. (9). Thus the
presented framework allows for the unique construction of the functional form of the initial conditions
for the double parton distributions, using the knowledge of the functional form of the single parton
distribution functions if the latter ones can be expressed in terms of the series of the Beta distributions.
The powers of all the terms in the expansion for the double PDFs are uniquely fixed by the powers of
the single PDFs. In the case of the single channel, the normalization for the double PDFs is also fixed
in this framework.

As an example of the application we have used the MSTW2008 LO parametrization for the gluon
distribution to construct the double gluon distribution Dgg. To illustrate the correlations in the double
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Initial conditions for dPDFs: ratios
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This quantity can be seen below at the initial scale, Q2
0, with x2 = 10�2 in Figure 4.5.
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Figure 4.5. The ratio of double parton distribution function to the product of single parton distribution
functions at the initial scale Q2

0 = 1 GeV2 and x2 = 10�2.

We see that at this scale, this ratio is not at all near unity. Hence, one cannot factorize a double
parton distribution function into a product of single parton distribution functions. In Figure 4.6
below, we see the ratio of the evolved parton distribution functions at scales Q2 = 25 GeV2 and
Q2 = 100 GeV2 with x2 = 10�2.
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Figure 4.4. Double parton distribution function evolved to two different scales, Q2 = 25 GeV2 and Q2 =
100 GeV2, with x2 = 10�2.

It should be noted that after the evolution up to some scale Q2 that the momentum sum rule given
by Eq. (2.2.8) is exactly satisfied by the parton distributions shown above.

Finally, in an effort to determine how well double parton distribution functions factorize, that is,
how good of an approximation it is to say that Dgg

2 (x1, x2, Q
2) = Dg

1 (x1, Q
2) Dg

1 (x2, Q
2), we plot

the following quantity:

Rgg
�
x1, x2, Q

2
�

=
Dgg

2 (x1, x2, Q
2)

Dg
1 (x1, Q2) Dg

1 (x2, Q2)
. (4.2.21)

Ratio of double distribution to product of single distributions:

• Measure of the correlations at the initial scale.

• For this parametrization the correlations are 
very significant.

• Ratio different from unity over wide range of x.

• Factorization of powers at small x but different 
normalization.
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Evolution of single and double PDFs
Evolve the  dPDFs and sPDFs using DGLAP equations; 

Df
1 (x, Q0) ! Df

1 (x, Q)

Df1f2

2 (x1, x2, Q0) ! Df1f2

2 (x1, x2, Q)

Solution found in the Mellin space and then numerically inverted to the momentum space.

Correlation washed out by evolution except for large x.
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because the momentum fraction x2 is much larger, therefore we expect there to be correlation
between the two partons, and hence factorization not to be a good approximation. In Figure 4.8
below, we see the ratio of the evolved parton distribution functions at scales Q2 = 25 GeV2 and
Q2 = 100 GeV2.
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Figure 4.8. The ratio of double parton distribution function to a product of single parton distributions
functions at two different scales, Q2 = 25 GeV2 and Q2 = 100 GeV2, with x2 = .3.

It is observed that the factorization of the double parton distribution function into a product of
single parton distribution functions holds at small values of the momentum fraction x. This is
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It is observed that the factorization of the double parton distribution function into a product of
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Figure 1. The ratio of the double PDF to the product of single PDFs, constructed in the framework using Dirichlet
distributions from MSTW2008 LO parametrization. Left: the ratio at the initial scale Q2 = 1 GeV2 for x2 = 0.01.
Right: the ratio evolved to Q2 = 25 GeV2 and x2 = 0.03.

distributions it is useful to present the results in the form of the ratio of the double PDF and the product
of the single PDFs

Rgg(x1, x2; t) =
Dgg(x1, x2; t)

Dg(x1; t)Dg(x2; t)
. (10)

In the left plot in figure 1 the ratio is showed for the initial scale Q2 = 1 GeV2. We see that for this
very low scale, the ratio is significantly different than unity for wide range of x, which implies that the
correlations are very large. On the right hand plot, we show the ratio after the single and double PDFs
have been evolved to a higher scale using the evolution equations. We have checked explicitly that the
evolution does preserve the momentum sum rule which has been imposed onto the initial conditions
within the presented construction. The evolved ratio indicates that most of the correlations are washed
out by the LO evolution, except at the highest value of the longitudinal momentum

3 Unintegrated double PDFs

An important aspect for the description of the processes in hadronic collisions is the transverse mo-
mentum dependence of the parton distribution functions. The collinear description has certain lim-
itations in that it does not correctly describe the kinematics of the reaction, particularly when one
considers more exclusive processes. In that context, the transverse momentum dependent (or unin-
tegrated parton distributions) gained a lot of attention due to the fact that they encode more correct
kinematics of the process. The question thus can be posed as to how to construct the unintegrated
double parton distribution functions. In [5] a practical approach has been suggested which is based on
the formulation originally proposed in [6], called the KMR (Kimber-Martin-Ryskin) approach for the
single unintegrated PDFs. The idea behind this approach, which is accurate to the leading power, is
that the unintegrated PDFs can be obtained using the integrated PDFs and the Sudakov form factors.
The benefits are that one can utilize the integrated PDFs obtained from the standard DGLAP equations
to introduce the transverse momentum dependence.

The construction of the KMR framework of the unintegrated PDFs starts from the DGLAP evolu-
tion equation written in the following form

∂Da(x, µ)
∂ ln µ2 =

∑
a′

∫ 1−∆

x

dz
z

Paa′ (z, µ) Da′
( x

z
, µ

)
− Da(x, µ)

∑
a′

∫ 1−∆

0
dzzPa′a(z, µ) , (11)
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where the first term comes from the real emissions and the second term is the virtual contribution.
The cutoff ∆ is introduced to regulate the soft divergencies in both terms. After the integration of the
virtual part the solution can be written in the following form

Da(x,Q) = Ta(Q,Q0, )Da(x,Q0) +

∫ Q2

Q2
0

dk2
⊥

k2
⊥

fa(x, k⊥,Q) , (12)

where the unintegrated parton distribution function (UPDF) are given by

fa(x, k⊥,Q) ≡ Ta(Q, k⊥)
∑

a′

∫ 1−∆

x

dz
z

Paa′ (z, k⊥)Da′
( x

z
, k⊥

)
, (13)

with Ta(Q, k⊥) being the Sudakov form factor. The transverse momentum dependent density is thus
built from the standard integrated density in the last step of the evolution through the inclusion of the
Sudakov form factor. The cutoff parameter needs to be specified in order to fully fix the unintegrated
PDF. In [6] ∆ = k⊥/Q was chosen in the spirit of the DGLAP strongly ordered emissions. In the
following works, for example [7], angular ordering was considered which results in ∆ = k⊥/(k⊥ + Q)
and allows for the smooth transition into the region k⊥ > Q.

In order to extend the KMR construction to the double PDFs one can use the parton-to-parton
evolution functions, which evolve the parton densities from initial scale to final scale, i.e.

D̃a(n, µ) =
∑

b

Ẽab(n, µ, µ0) D̃b(n, µ0) , (14)

where Mellin space representation was used, with variable n, instead of the direct x space (see Eq. (6)).
These parton-to-parton evolution functions Ẽ obey the DGLAP equations, and therefore the virtual
part can also be integrated out.

Then, one can represent the solution to the evolution equations for the double PDFs (3) by means
of these evolution functions [8],

D̃a1a2 (n1, n2,Q1,Q2) =
∑
a′,a′′

{
Ẽa1a′ (n1,Q1,Q0) Ẽa2a′′ (n2,Q2,Q0) D̃a′a′′ (n1, n2,Q0,Q0)

+

∫ Q2
min

Q2
0

dQ2
s

Q2
s

Ẽa1a′ (n1,Q1,Qs) Ẽa2a′′ (n2,Q2,Qs) D̃(sp)
a′a′′ (n1, n2,Qs)

}
, (15)

where Q2
min = min{Q2

1,Q
2
2} and D̃(sp)

a′a′′ is the non-homogeneous contribution originating from the single
parton density. Using the solutions for the parton-to-parton evolution functions one can perform the
same substitution as was done for the case of the single PDFs and find the corresponding unintegrated
double parton distribution function. It turns out however, that in that case there are three distinct
regions of momenta, where different forms of the unintegrated double PDFs are obtained:

For the case when k1⊥ ≤ Q0 and k2⊥ > Q0, we have

f̃ (h)
a1a2

(n1, n2, k2⊥,Q1,Q2) = Ta1 (Q1,Q0) Ta2 (Q2, k2⊥)
∑

b

P̃a2b(n2, k2⊥) D̃(h)
a1b(n1, n2,Q0, k2⊥) . (16)

The dependence of the transverse momentum k1⊥ is integrated over up to Q0 in such a case and k1⊥ is
not present among the arguments of the defined function. The effect of such an integration is hidden
in the integrated double PDFs on the r.h.s. taken at the scale Q0 for the first parton.
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Similarly, for k1⊥ > Q0 and k2⊥ ≤ Q0, we have

f̃ (h)
a1a2

(n1, n2, k1⊥,Q1,Q2) = Ta1 (Q1, k1⊥) Ta2 (Q2,Q0)
∑

b

P̃a1b(n1, k1⊥) D̃(h)
ba2

(n1, n2, k1⊥,Q0) . (17)

Now the momentum k2⊥ is integrated up to the scale Q0 and only k1⊥ dependence is present. Finally,
for k1⊥, k2⊥ > Q0 the unintegrated double PDF has the form

f̃ (h)
a1a2

(n1, n2, k1⊥, k2⊥,Q1,Q2) = Ta1 (Q1, k1⊥) Ta2 (Q2, k2⊥)

×
∑
b,c

P̃a1b(n1, k1⊥) P̃a2c(n2, k2⊥)D̃(h)
bc (n1, n2, k1⊥, k2⊥) . (18)

The treatment of the non-homogeneous term is much more complicated because there are two poten-
tial contributions to the transverse momentum dependence. One can have the transverse momentum
either from the evolution of one or both partons after the splitting or from the splitting vertex itself.
In the first case, it is sufficient to consider the inhomogeneous term from formula (15) and use the
solution for the parton evolution functions as we have done before. For the second contribution, one
needs to compute the exact form of the vertex including the transverse momentum dependence, and
therefore treat the splitting beyond the collinear approximation.

Summary
In this presentation we have discussed two issues related with the double parton distribution functions.
In the first part, we have proposed the framework for the construction of the initial conditions for
the double PDFs using the information from the single PDFs and the constraints from the sum
rules. It turns out that (in the single channel case) there is a unique solutions, which allows for the
construction of such initial conditions. In the second part, we have proposed a generalization of the
KMR framework for the unintegrated PDFs to the double PDFs. The treatment of the homogeneous
term is relatively straightforward and one arrives at three different perturbative contributions for the
unintegrated double PDFs depending on the relevant hierarchy of hard scales. The treatment of the
non-homogeneous term is more complicated as it involves two sources of the transverse momenta
either from the evolution or from the splitting vertex itself, and therefore in principle it goes beyond
the collinear approximation. The presented framework for unintegrated DPDFs relies on the use of
the integrated double PDFs and can be implemented numerically.

This work was supported by the National Science Center, Poland, Grant No.
2015/17/B/ST2/01838, by the Department of Energy Grant No. DE-SC-0002145 and by the
Center for Innovation and Transfer of Natural Sciences and Engineering Knowledge in Rzeszów.

References
[1] M. Diehl, J. R. Gaunt, D. Ostermeier, P. Ploessl and A. Schaefer, JHEP 1601, 076 (2016).
[2] J. R. Gaunt and W. J. Stirling, JHEP 1106, 048 (2011), [1103.1888].
[3] K. Golec-Biernat and E. Lewandowska, Phys. Rev. D 90, no. 1, 014032 (2014).
[4] K. Golec-Biernat, E. Lewandowska, M. Serino, Z. Snyder and A. M. Stasto, Phys. Lett. B 750,

559 (2015).
[5] K. Golec-Biernat and A. M. Stasto, arXiv:1611.02033 [hep-ph].
[6] M. A. Kimber, A. D. Martin and M. G. Ryskin, Eur. Phys. J. C 12, 655 (2000).
[7] M. A. Kimber, J. Kwiecinski, A. D. Martin and A. M. Stasto, Phys. Rev. D 62, 094006 (2000).
[8] F. A. Ceccopieri, Phys. Lett. B 697, 482 (2011).


