

포화 그리고 기하학적 스케일링

미할 프라샬로비츠 야게로냔 대학, 크라코프, 폴란드

제주도, 1.9.2016.

Saturation and geometrical scaling

Michał Praszałowicz M. Smoluchowski Inst. of Physics Jagiellonian University, Kraków, Poland

Jeju Island 1.9.2016.

DGLAP vs BFKL Evolution

small $x \quad Y = \log 1/x$ large W

Balitsky, Fadin, Kuraev, Lipatov

Balitsky, Kovchegov

large x small W

Dipole Picture

BFKL equation has very simple form and interpretation in the dipole picture of A. Mueller

BK Equation

in terms of a Fourier transform:

$$N(x,Y) = x^2 \int \frac{d^2 \vec{k}}{2\pi} e^{i\vec{k}\cdot\vec{x}} \tilde{N}(k,Y)$$

$$\frac{\partial}{\partial Y}\tilde{N}(k,Y) = \overline{\alpha}_{s} \chi(-\partial/\partial \ln k^{2}) \tilde{N}(k,Y) - \overline{\alpha}_{s} \tilde{N}^{2}(k,Y)$$

here $\boldsymbol{\chi}$ is a BFKL characteristic function

$$\chi(\gamma) = 2\psi(1) - \psi(\gamma) - \psi(1 - \gamma)$$

there exists a theorem from the '30 (Fisher, Kolomogorov, Petrovsky, Piscounov) that non-linear equations of this sort have asymptotically travelling wave solutions

S. Munier, R.B. Peschanski PRL 91 (2003) 232001 PRD 69 (2004) 034008 **Travelling waves**

identify time : t = Y, position : $x = \ln k^2$

Position: $X(t) = X_0 + v_c t$ © G. Soyez

S. Munier, R.B. Peschanski PRL 91 (2003) 232001 PRD 69 (2004) 034008 **Travelling waves**

identify time : t = Y, position : $x = \ln k^2$

Conlusions

• Nonlinear BK equation generates sauration scale $Q_s(x)$

Travelling waves in QCD imply Geometrical Scaling

$$f(x, k^2) = \mathcal{F}\left(\frac{k^2}{Q_s^2(x)}\right)$$

$$Q_s(x) = Q_0 \left(\frac{x_0}{x}\right)^{\lambda/2}$$

Conlusions

- Nonlinear BK equation generates sauration scale $Q_s(x)$
- In the region with no other scales Geometrical Scaling emerges

Deep Inealstic Scattering

Saturation scale: energy and x dependence

$$Q_{\rm sat}^2(x) = Q_0^2 \left(\frac{x}{x_0}\right)^{-\lambda}$$

A.M. Stasto, K. J. Golec-Biernat, J. Kwiecinski PRL 86 (2001) 596-599

M.Praszalowicz and T.Stebel JHEP 1303, 090 (2013) arXiv:1211.5305 [hep-ph] and JHEP 1304, 169 (2013) arXiv:1302.4227 [hep-ph]

Saturation scale: energy and x dependence

Workshop on QCD and Diffraction

Organising Committee: Wojciech Broniowski Janusz Chwastowski Krzysztof Kutak Michał Praszałowicz

Christophe Royon Anna Staśto Rafał Staszewski

5-7 December 2016 Cracow, Poland

qcdworkshop.ifj.edu.pl

Conlusions

- Nonlinear BK equation generates sauration scale $Q_s(x)$
- In the region with no other scales Geometrical Scaling emerges
- GS works well in DIS up to relatively large $x \sim 0.08$ with $\lambda \sim 0.33$

proton-proton @ LHC

Gribov, Levin Ryskin, High p_{τ} Hadrons In The Pionization Region In QCD. Phys.Lett.B100:173-176,1981.

Michal Praszalowicz

gluon distribution

istribution
$$Q^2$$
 unintegrated glue $xG(x,Q^2) = \int dk_{
m T}^2 \, arphi(x,k_{
m T}^2)$

Golec-Biernat – Wuesthoff (DIS)

Kharzeev – Levin (AA)

$$\begin{split} \varphi(x,k_{\mathrm{T}}^2) &= S_{\perp} \frac{3}{4\pi^2} \frac{k_{\mathrm{T}}^2}{Q_{\mathrm{s}}(x)^2} \exp\left(-k_{\mathrm{T}}^2/Q_{\mathrm{s}}(x)^2\right) \\ S_{\perp} &= \sigma_0 \end{split}$$

 S_{\perp} is the transverse size given by geometry

$$\frac{d\sigma}{dyd^2p_{\rm T}} = \frac{3\pi\alpha_{\rm s}}{2} \frac{Q_s^2(x)}{p_{\rm T}^2} \int \frac{d^2\vec{k}_{\rm T}}{Q_s^2(x)} \,\varphi_1\left(\vec{k}_{\rm T}^2/Q_s^2(x)\right) \varphi_2\left((\vec{k}-\vec{p}\,)_{\rm T}^2/Q_s^2(x)\right)$$

$$\frac{d\sigma}{dyd^2p_{\rm T}} = \frac{3\pi\alpha_{\rm s}}{2} \frac{Q_s^2(x)}{p_{\rm T}^2} \int \frac{d^2\vec{k}_{\rm T}}{Q_s^2(x)} \varphi_1\left(\vec{k}_{\rm T}^2/Q_s^2(x)\right) \varphi_2\left((\vec{k}-\vec{p}\,)_{\rm T}^2/Q_s^2(x)\right)$$
$$\frac{d\sigma}{dyd^2p_{\rm T}} = S_{\perp}^2 \mathcal{F}(\tau) \quad \tau = \frac{p_{\rm T}^2}{Q_s^2(x)} \quad Q_s(x) = Q_0\left(\frac{x_0}{x}\right)^{\lambda/2}$$

$$\frac{d\sigma}{dyd^2p_{\rm T}} = \frac{3\pi\alpha_{\rm s}}{2} \frac{Q_s^2(x)}{p_{\rm T}^2} \int \frac{d^2\vec{k}_{\rm T}}{Q_s^2(x)} \varphi_1\left(\vec{k}_{\rm T}^2/Q_s^2(x)\right) \varphi_2\left((\vec{k}-\vec{p}\,)_{\rm T}^2/Q_s^2(x)\right)$$
$$\frac{d\sigma}{dyd^2p_{\rm T}} = S_{\perp}^2 \mathcal{F}(\tau) \quad \tau = \frac{p_{\rm T}^2}{Q_s^2(x)} \quad Q_s(x) = Q_0 \left(\frac{x_0}{x}\right)^{\lambda/2} \begin{array}{c} \text{parton-hadron duality:} \\ \text{power-like growth of} \\ \text{particle multiplicity} \end{array}$$

Geometrical scaling of p_{T} distributions

L. McLerran, M. P. Acta Phys.Polon.B41:1917,2010, B42:99,2011 M. P. Phys.Rev.Lett.106:142002,2011, Acta Phys.Pol. B42 (2011) 1557-1566 Phys.Rev. D87 (2013) 071502(R)

$$\tau = \frac{p_{\rm T}^2}{Q_{\rm sat}^2(p_{\rm T}/\sqrt{s})} = \frac{p_{\rm T}^2}{1\,{\rm GeV}^2} \left(\frac{p_{\rm T}}{\sqrt{s}\times10^{-3}}\right)^{\lambda}$$

Cross-section scaling in pp

ALICE 1307.1093 [nucl-ex], Eur.Phys.J C73 (2013) 2662

$$\tau = \frac{p_{\rm T}^2}{Q_{\rm sat}^2(p_{\rm T}/\sqrt{s})} = \frac{p_{\rm T}^2}{1\,{\rm GeV}^2} \left(\frac{p_{\rm T}}{\sqrt{s}\times10^{-3}}\right)^2$$

$$\tau = \frac{p_{\rm T}^2}{Q_{\rm sat}^2(p_{\rm T}/\sqrt{s})} = \frac{p_{\rm T}^2}{1\,{\rm GeV}^2} \left(\frac{p_{\rm T}}{\sqrt{s}\times10^{-3}}\right)^{\lambda}$$

Conlusions

- Nonlinear BK equation generates sauration scale $Q_s(x)$
- In the region with no other scales Geometrical Scaling emerges
- GS works well in DIS up to relatively large $x \sim 0.08$ with $\lambda \sim 0.33$
- GS for the cross-section compatible with DIS

$$\frac{d\sigma}{dyd^2p_{\mathrm{T}}} = \frac{3\pi\alpha_{\mathrm{s}}}{2} \frac{Q_s^2(x)}{p_{\mathrm{T}}^2} \int \frac{d^2\vec{k}_{\mathrm{T}}}{Q_s^2(x)} \varphi_1\left(\vec{k}_{\mathrm{T}}^2/Q_s^2(x)\right) \varphi_2\left((\vec{k}-\vec{p}\,)_{\mathrm{T}}^2/Q_s^2(x)\right)$$
$$\frac{d\sigma}{dyd^2p_{\mathrm{T}}} = S_{\perp}^2 \mathcal{F}(\tau) \quad \tau = \frac{p_{\mathrm{T}}^2}{Q_s^2(x)} \qquad dp_{\mathrm{T}}^2 = \frac{2}{2+\lambda} \bar{Q}_{\mathrm{s}}^2(W) \,\tau^{-\lambda/(2+\lambda)} d\tau$$
$$\bar{Q}_s(W) = Q_0 \left(\frac{W}{Q_0}\right)^{\lambda/(2+\lambda)}$$

$$\frac{d\sigma}{dyd^2p_{\mathrm{T}}} = \frac{3\pi\alpha_{\mathrm{s}}}{2} \frac{Q_s^2(x)}{p_{\mathrm{T}}^2} \int \frac{d^2\vec{k}_{\mathrm{T}}}{Q_s^2(x)} \varphi_1\left(\vec{k}_{\mathrm{T}}^2/Q_s^2(x)\right) \varphi_2\left((\vec{k}-\vec{p}\,)_{\mathrm{T}}^2/Q_s^2(x)\right)$$
$$\frac{d\sigma}{dyd^2p_{\mathrm{T}}} = S_{\perp}^2 \mathcal{F}(\tau) \quad \tau = \frac{p_{\mathrm{T}}^2}{Q_s^2(x)} \qquad dp_{\mathrm{T}}^2 = \frac{2}{2+\lambda} \bar{Q}_{\mathrm{s}}^2(W) \,\tau^{-\lambda/(2+\lambda)} d\tau$$
$$\frac{d\sigma}{dy} = S_{\perp}^2 \int \mathcal{F}(\tau) d^2p_{\mathrm{T}} = S_{\perp}^2 \bar{Q}_s^2(W) \int \mathcal{F}(\tau) \dots d\tau = \frac{1}{\kappa} S_{\perp}^2 \bar{Q}_s^2(W)$$

Conlusions

- Nonlinear BK equation generates sauration scale $Q_s(x)$
- In the region with no other scales Geometrical Scaling emerges
- GS works well in DIS up to relatively large $x \sim 0.08$ with $\lambda \sim 0.33$
- GS for the cross-section compatible with DIS
- In pp GS works for multiplicity distributions with with $\lambda \sim 0.22$ (!)

continue with multiplicity scaling...

Power-like growth of multiplicity

http://th-www.if.uj.edu.pl/school/2014/talks/braun-munzinger_1.pdf

Conlusions

- Nonlinear BK equation generates sauration scale $Q_s(x)$
- In the region with no other scales Geometrical Scaling emerges
- GS works well in DIS up to relatively large $x \sim 0.08$ with $\lambda \sim 0.33$
- GS for the cross-section compatible with DIS
- In pp GS works for multiplicity distributions with with $\lambda \sim 0.22$ (!)
- As a consequence total multiplicity grows with energy as $s^{0.1}$

Application to pA scattering at the LHC

Color Glass Condensate in pPB

stolen from Bozek, Bzdak, Skokov

$$\frac{dN}{dy} = S_{\perp}Q_p^2 \left(2 + \ln \frac{Q_A^2}{Q_p^2}\right)$$

$$Q_p^2(W, y) = Q_0^2 \left(\frac{W}{W_0}\right)^{\lambda} \exp(\lambda y),$$
$$Q_A^2(W, y) = Q_0^2 N_{\text{part}} \left(\frac{W}{W_0}\right)^{\lambda} \exp(-\lambda y)$$

 $\lambda = 0.32$

 $\frac{dN_{\rm ch}}{dy} = S_{\perp}Q_p^2 \left(2 + \ln\frac{Q_A^2}{Q_p^2}\right)$

ZNA method

Multiplicity for pPb

J. Adam et al. [ALICE Collaboration], Phys. Rev. C 91 (2015) 064905.

Multiplicity for pPb

J. Adam et al. [ALICE Collaboration], Phys. Rev. C 91 (2015) 064905.

Fluctuations of Q_{sat} in pPb

L. McLerran, M. Praszalowicz, Annals of Phys. 372 (2016) 215

Conlusions

- Nonlinear BK equation generates sauration scale $Q_s(x)$
- In the region with no other scales Geometrical Scaling emerges
- GS works well in DIS up to relatively large $x \sim 0.08$ with $\lambda \sim 0.33$
- GS for the cross-section compatible with DIS
- In pp GS works for multiplicity distributions with with $\lambda \sim 0.22$ (!)
- As a consequence total multiplicity grows with energy as $s^{0.1}$
- Fluctuations of the saturation scale may explain *dN/dy*

Conlusions

- Nonlinear BK equation generates sauration scale $Q_s(x)$
- In the region with no other scales Geometrical Scaling emerges
- GS works well in DIS up to relatively large $x \sim 0.08$ with $\lambda \sim 0.33$
- GS for the cross-section compatible with DIS
- In pp GS works for multiplicity distributions with with $\lambda \sim 0.22$ (!)
- As a consequence total multiplicity grows with energy as $s^{0.1}$
- Fluctuations of the saturation scale may explain *dN/dy*

Not discussed

- Consequences of GS for $F_{\rm L}$
- Scaling violations in pp due to $y \neq 0$
- Scaling violations in pp due to $\lambda(Q^2)$
- Scaling in pp for identified particles
- Connection with Tsallis distribution
- <p_T>(N) for identified particles
- geometrical scaling predicts energy dependence of $\langle p_T \rangle$
- $< p_T > (N_{ch})$ difficult to describe by untuned MonteCarlos
- scaling of $\langle p_T \rangle (N_{ch})$ induced by energy dependence of $Q_{sat} + CGC$
- GS in heavy ion collisions scaling with energy and $N_{\rm part}$
- 끝

감사합니다!

Workshop on QCD and Diffraction

Organising Committee: Wojciech Broniowski Janusz Chwastowski Krzysztof Kutak Michał Praszałowicz

Christophe Royon Anna Staśto Rafał Staszewski 5-7 December 2016 Cracow, Poland

qcdworkshop.ifj.edu.pl

