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Single scattering process

Single parton scattering: one hard process

_>_/_\ s Single collinear PDF:

P ———— D{(z,Q?)
D! (z, Q%

Partonic cross section:

511 (3,Q%, m?)

b2

Collins, Soper, Sterman

Collinear factorization:

Given the presence of the hard scale, the cross section (up to power corrections) can be factorized into
perturbatively calculable partonic cross section and non-perturbative parton distribution functions.

do = D{(z1,Q%) ® 677 (3,Q%, m?) @ D! (22,Q%) + O :

QQ)

Anna Stasto, ISMP2016



Double scattering process

Double parton scattering: two hard processes

e Two types of partons: f1, fo
fa
o Two momentum fractions: X1, 1+ 1z < 1
f faf5
Two hard scales: Ql? QZ > AQCD
o (@) [
Relative transverse momentum: qdT
fi
P =3 2, Q)

Double PDF (DPDF):  DI'/2 (21, 29, Q%, Q2: 1)

Factorization formula(?):
_ nfife N2 N2 ~f1fl(a 2
dU_DQ (xlax%QlaQQ)@J 1(817Q1)
!/ p/
A fofl A 2 fifar r 1.2 A2
XRo 2(52,@2) ®D2 ($17$27Q17Q2)
Diehl,Gaunt,Ostermesier,Ploessl,Schaefer Important steps towards the proof in double Drell-Yan process.
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Evolution equations for single PDFs

DGLAP evolution equation for single PDF:
4 )

0, Dy (x,t) = Z/ du s g (z,u,t) Dy (u, t)
N 0 y
Real and virtual parts of the kernel:

Evolution variable:

t =1InQ*/Q2

Kep(z,u,t) = Kff,xut—éu—a; 5ff//Cf(a:t)

Real emission kernel:

1 x
/Cff,(a: u,t) = —Pff/(a,t)é’(u—x)

Splitting functions:

P (2,t) = sl )PJE(J)C)/( )+ OKS(QPJE})/(Z) + ...

27
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Evolution equations for single PDFs

DGLAP evolution equation for single PDF:

Evolution variable:

i ) t=1nQ%/Q;
0, D¢ (x, 1) :Z/ du s g (z,u,t) Dy (u, t)

fr00
1\ J

Real and virtual parts of the kernel: ,
Fits and extraction(see talk by Voica Radescu)

Kpp(z,u,t) =K (z,u,t) — 6(u—x)dpp K (2,1) . HMlaaZzEvs

o 1
~ [ W =10 GeV?
Real emission kernel:

1 x
/Cff,(a: u,t) = —Pff/(a,t)é’(u—x)

Splitting functions:

Flexible initial conditions,
constrained by the momentum

2
t
Pryr(z,t) = s (f )PJE(})/( ) + i )P(l) (z) + .... and sum rule only.

27 (2m)2" 1 _— —
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Evolution equations for double PDFs

DGLAP evolution equation for double PDF: %ﬁm i
4 / o

]_—ZCQ
Ot Dy, g, (w1, 2,1) = Z/ du s, ¢r(x1,u,t) Dy s, (u, x2,t)
0

f/ A
1_$1 / u
+Z/ du,cf2f’(x27u7t)Df1f’(x1,u,t)
£/ 0

T P

R
—|—ZICf/_>f1f2(x1,$2,t)Df/(I'1—|—I'2, ) D o —
- I’ / +
T i)

Konishi, Ukawa, Veneziano; Snigirev, Zinoveyv, Shelest

Inhomogeneous term

Splitting term of one parton into two:

as(t) 1
ICe T1,To, 1) = —
fﬁflfQ( b2 ) 27 5131—|—5172 331—|—372

Evolution equation for double PDFs is coupled with single PDFs.

Need to be solved together with suitable initial conditions.

L a ST vz &3 o At § il DRI o At Sl S RO AT SR G e REH ¢ DR A BT A e T =~ IERReL Snss
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Sum rules for single and double PDFs

(" 1
Momentum sum rule for single PDFs Z/O drzDy(z,t) = 1J

 J

1
Quark number sum rule for single PDFs / dz {Dg,(z,t) — Dg,(v,t)} = NJ

\_ 0

1—=x
: Df1f2($17$27t)
d =

Momentum sum rule for double PDFs [].Z/o T121 Dy, (@, 1) $2J

Conditional probability to find the parton f; with the momentum fraction 1 while
keeping fixed the second parton f; with momentum o

e )
1—%2
Valence quark number sum rule for double PDFs / dz1{Dy, s, (w1, 2,t) — Dg 1, (1, 22, 1)}
0
N; Dy, (z2,t) for fo # qi, Gi
= (Nz — 1) Df2 (.CCQ,t) for f2 = ({;
(Nz + 1) Df2 (ZCQ,t) for f2 — Cj@

- J

If sum rules hold for initial conditions they will hold for higher scales after the evolution.
How to consistently impose the initial conditions for sPDF and dPDF with sum rules?
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Problem of initial conditions in dPDFs

Usually simplifying assumption is taken:

[ Dy, f, (%1, %2) = Dy, (21) Dy, (22) j

Factorizable ansatz, could work well for rather small x but is inconsistent with sum rules.

Improvement with correlating factor:

Gaunt, Stirling

[

-

Df1f2 ($1,332) — Dfl (Il)Df2 (CEQ)

(1 — L1 — 562)2

\

(1= a0)27 (1 — ag) 2402

J

Takes into account some correlation but still does not obey sum rules exactly.
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Initial conditions: Dirichlet distribution

Consider Beta distribution and gluons only (for now)

(1xﬂzﬁwxﬂw1—xW)

Mellin transform: . Momentum sum rule in Mellin space:
- . N
D(n) = /O drx"" " D(x) D(2)=1
- _ 1 ' n—1, —« _B(n_@76+1)
D(n)_B(Q—a,l—l—ﬁ)/o drz" 'z (1_$)B_B(2—a,6—|—1)

Take the ansatz for double distribution in the form of the Dirichlet distribution:

~

(D(le,ﬂjg) = Ny :1:1_6‘:132_5‘(1 — 1y — 332)5)

Double Mellin transform:

. L 1 N I'(ny —a&)l(ny — &)T(1 + B
D(ni,ne) = / dazlxqfl_l/ dasgng_lD(azl,xg) -> D(ni,n3) = No (m — &)l(na oz)~ (+5)
0 0 I'(ny+ny+1+4+6—2a)
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Initial conditions: relating the parameters

The momentum sum rule for dPDFs in Mellin space

4 )

LHS: Double PDFs in D(n1,2) = D(m) = D(m +1) RHS: Single PDFs in
Mellin space Mellin space

kD(Q,ng) = D(ng) — D(ng -+ 1)

J

[)(?7,1) — B(nl —|— 1) = 1

I Do+ 5
RHS: CIEEP RS

B2—-a,6+1)T2+8+n —a)

B(ny —a,8+1) =B +1—q,8+1)) =

Where the following property of Beta function was used:
B(a,b) = B(a+1,b) + B(a,b+ 1)

LHS: _ T'(ny — &2 —ar(1+ f)
T(ny + 3+ 5 —24a)

Comparing the functional form of both sides we see that the equality can be satisfied if

- - 1
[ = q, 5:5+a—1j and N2:B(2—a,a+B)B(2—oz,B+1)
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Initial conditions

If the single distribution is given by a Beta distribution

D(z) = Nyz7% (1 —2x)P
( )

There is a unigue solution in terms of the Dirichlet distribution for the double parton density:

@(5’51»932) = Ny 51?1_%2_&(1 — T1 — 372)5]

With powers of the dPDF being related to the powers of sPDF

[ d=a, B=F+a—1 j

Normalization for dPDF in this particular case is uniquely determined.
Small x powers for single and double PDFs are the same.
The large x power of the correlating factor in dPDF is related to the sum of

large and small x powers of the single distribution.
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Initial conditions: expansion

Realistic parametrizations are however more complicated than a single Beta distribution.

Example MSTW2008 gluon PDF: 2D (2,Q%) = Niz ™% (1 — 2)™ (14 e,v/7 + 7,7) ,

However, this parametrization is sum of Beta distributions of the form:

[ D(x) = Ny Zakx_o‘k (1 — )P+ J
k=1

Assuming that the dPDF is the sum of Dirichlet distributions:

[ D(x1,x2) = No chxfak (1 —xp — :132)5’“ J

Performing the same analysis as before (for single channel) one obtains the conditions for each k:

[&k:akJ [~k6k1‘|‘@kJ

The normalizations:
B(ag + 61,2 — aq) 1
No = N
BBk + ak,2 — ay) ’ 1B(a1+51,2—a1)

Cr — QL
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Initial conditions for dPDFs

e Use this algorithm, expansion in terms of Beta and Dirichlet distributions, to construct dPDF
from MSTW2008 gluon.

* Single channel (gluons) only.

e Using different normalization for the LO MSTW2008 gluon.

Single Parton Distribution Function Double Parton Distribution Function at Inital Scale
0?=1.GeV? x=1.x107%, 0*=1.GeV*
150
N
Ql
>§] ,
- 100
S
Q|
S
N
=50
=
107 107 0.001 001 0.1 1
X
X1
3 Anna Stasto, ISMP2016



Initial conditions for dPDFs: ratios

Ratio of double distribution to product of single distributions:

( )
Dgg (3:1 To QQ)
R99 2\ _ 2 ) 4
17 @) = B (01,07 DY (4. @)
. J

e Measure of the correlations at the initial scale.

* For this parametrization the correlations are
very significant.

* Ratio different from unity over wide range of x.

* Factorization of powers at small x but different
normalization.

* In principle can extend to quarks, requires

some constraints put onto the form of the
single PDFs.

Ratio of Double Parton Distribution to Product
of SingleParton Distributions

x=1.x107%,0*=1.GeV?

107 1074 0.001 0.01 0.1 1
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Evolution of single and double PDFs

Evolve the dPDFs and sPDFs using DGLAP equations;
D{ (z,Qo) = D{(,Q)
D} (21,22, Qo) = DI (21,22, Q)

Solution found in the Mellin space and then numerically inverted to the momentum space.

Ratio of Double Parton Distribution to Product Ratio of Double Parton Distribution to Product
of SingleParton Distributions of SingleParton Distributions
x,=3.x 107", 0*=25.GeV? x,=3.x 107", 0*=100. Ge V?
0.8: 7 0.8/

NQ} 0.6 & 06
-~ 04 = 04
= E
A = 7
02 02f

00! — — ‘ ‘ ‘ — 0.0; ‘ ‘ ‘ ‘ ‘ ‘

10 10 0.001 001 0.1 1 05 o ool ool o :

X1
X1

Correlation washed out by evolution except for large x.

Sz ST g% . o FT2AP Sz SNl g2 At TR oA A e Bl 2 DRI A gD A T O " e T a
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Unintegrated DPDFs

What about the transverse momentum dependence of the DPDFs?

Possible formulation:

Small x Color Glass Condensate formalism: higher Wilson line correlators
Relation to TMD (see next talk by Daniel Boer)

Advantages,' ¢ consistent formulation within the small x framework
* evolution equations in principle are available (up to NLLx)

Disaa’vantages.' equations are rather complicated to solve for higher point correlators

Can one formulate something more practical?

o Kimber - Martin - Ryskin approach to the unintegrated parton densities.
* Includes transverse momentum dependence in the parton densities.
* Practical approach for the phenomenology, using integrated densities, convoluted with the

Sudakov form factors
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Unintegrated PDFs

Martin, Kimber, Ryskin

DGLAP evolution for single PDF

0D, ( =4 dz 1—A
8lnlu Z/ Z Paa Z ILL)D ( )_Da(m,,u) ;A dZZPa/a(Z,ILL)

real virtual

after integrating out the virtual part

Q* J1.2
[Da@c, Q) = T.(Q.Q0)Da(w.Q0) + [ S fula k. Q)]
5 ML

0

where the “unintegrated density”:

[fa(iﬁ,h,Q) =Ta(Q, k1) Z/;A dZZ Paar(2,k1) Da (jlﬂ)]

a/

or

. Q? 1-A
[a(m,m,@) — 9 Tu(Q, k1) Da(a, kL)) ] with Sudakov 7, (q k) =exp{— /k = > J AN pL)}

Jln k7 formfactor

T,Q,k1)~1, Q~k,

(Q lﬂ)NO Q>>k¢
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Unintegrated PDFs

1-A
dz x
(a(a}akLaQ) :Ta(Q7kJ_)Z//x ?Paa’(z7kL)Da’<;7kJ_> J
a T<kJ_7lu)
Dependence on two scales obtained in the last step of the evolution 0

Need to specify the cutoff :

DGLAP ordering: A bL
Q
k1
CCFM angular ordering: A= kL +Q
Ol —0) = > zk/(1—2) fmaz = —
H ' o+ ky

Larger phase space for emissions, tail in transverse momentum extends to  k; > ()
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Extending the KMR framework to DPDFs

Use parton-to-parton evolution function:

(n is Mellin variable conjugated to x)

[Da( =) Eu n"ujuo) Dy (n,uo)-j

It evolves sPDF to scale 4 from scale g

~

8 1
81n 2 ’I’L 3 Iy ,uO ZPaa n ,u n [L,/,Lo) — Eab(nnua /'LO) Z/ dZZPa/a(Z,,U/)
;r J0

" _initial condition
. . . Eab(n, 110, 110) = dab.
Formally integrating out virtual part:

2
5 L

. Q* J12 . .
Ea(n, @, Qo) = Ta(Q, Qo) da + / M 1@ k1) Poar (. 1) By (1, k1, Qo)

Double parton distrib;jtiqns (DGLAP eq):

——
Dayay (N1, ng, i, o) = Z {Eala’ (n1, p1, o) Eagar (N2, pi2, 140) Dararr (11, 12, fo, o) homogenous term
S
+ / Ea1a (n17/1'171u8) Eaza” (7’1,2,,&2,,“3) Da’a” (n17ln’27:u8)} inhomogenous term
n

2 2

T IR R oA g = Are - DRI DI Soase -~ ¢ et Selicc
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Homogeneous part of DPDF evolution

Dé?LQ(nl,nz,Ql,Qz) =@a1 (QlaQO)TCLQ(Q27QO) ﬁalag(n17n27QOaQOD

Q3 k2 - ; B
G / d:;j {Ta1 (Q1,Q0) Tu, (Q2, k21 ) ; Poyp(n2, ko) [; Epar(n2, k2.1, Qo) Dayar (11,12, Qo, QO)] }J

Q1 71.2 . . _
E / dlzu {Ta1 (Q1.k11) Tay (Q2,Q0) > _ Payp(na, k) [Z Ebqr(n1, k11, Qo) Daray (11, n2, Qo, Qo)} }]
b a’

Q3 kL Q32 k3,

Q7 dk2 Q3 dk2 . - _ ~ -
[+/ Qu/ - {Tal (Q1,k11) Ty (Q2, k21) ZPalb(nlale)Pagc(n%kQJ_){ > Eba’(nlali_aQO)Eca”(n%k2J_aQO)Da’a”(nlan%QOaQO)}}
b,c

al ’all

ko1

Four distinct regions of
phase space depending on
the ordering of scales.

Qo
k11
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Homogeneous part
TU‘“’Q”C) <]>T(lm,622)<]> C) OT(/{M,QQ) T(k11 Q1) Q

T(Qo,@ T(Q. @2
" T
:Q D(ki1,k12) /\) (\ D(Qo, k.12) D(k.11, Qo) I

Q1 ~ Q2> (g Q2> Q1 ~ Qg Q1> Q2 ~ Qg

2 2 2
Q1 ~ Q5 > (g k1.1 unintegrated kol

unintegrated

zZ92 Z1 72

1-A 1-A
1dz 2 dzo h) (T1 T2
[fé?@(maﬂ?%ku,ku,QlyQﬂ To, (@1, k1) To, (Q2, k21) Z/ Palb(zlvku) azc(z%kﬂ)Déc)(_ - k?u,ku)j

1- w1/Z1

QT ~ Qf and Q3 > Q5

k1.1 integrated k21 unintegrated
—A
2 dz h x
[flal 0y (1,2, k21, Q1,Q2) = T, (@1, Qo) T, (Q2, ka1 ) Z /QU2 z—; Payb(22, k21) Dé12)<x1, 2—27 Qo k2¢) j
b 11—z,
2 2 2 2
Q2> Q3 and Q3 ~ Q2
k21 integrated k1.1 unintegrated
h 4 le (h)
flgzl?ag(xlaanli_an QQ) al(ngklj_) a2(Q27Q0 Z Palb(zlali_)Dba <_1 x27k1J_,Q0)
Q7 ~ Q3 ~ Qg non-perturbative region - parametrized by integrated density

Anna Stasto, ISMP2016



Non-homogeneous part

In principle the same method can be applied to the non-homogeneous term:

min dlu’s
2 T

Z Eala ni, Ql /’LS) aza”(n27Q2a:uS)Déf§2/(nlan27:u8)

a a//

Délag(nlan%@l Q2) /

Plugging in the expressions for parton-to-parton evolution one obtains:

~ anzn d 2
Dé’fZi(m,nz,Ql,Qz) = /2 :25 [Tal(Qlaﬂs)Tag(Qzaﬂs)Délﬂ)z(nlanzaﬂs)

0 S

Q3 dk2 ~ .
+/ —2L {Tal(Ql ps) Ta, (Q2, k21 ) Z nz,ku)ZEba/f(nz,ku,/Ls)D((zlz)u(nl,nz,ku)}
My b

a//

Q% dk2 5 - ~
—i—/ 1L {TaQ(Qmus)Tal (Qhku)ZPalb(m,ku)ZEba/(m,kuyus)DSgi(m,nz,ku)}
u? ~

b

@ar? (9 a2, - - - - 7 (5p)
+ To (Q1,k11) Tay(Q2, k21 ) Y Payp(na, k1t) Page(na k1) Y Bvw (01 kis, i) Bear (n2, ko, pis) Dortyr (0, 2, pus)
Iz M b,c

a/’all

Again one ends up with four terms, their importance depends on the scale ordering.

However, due to the internal integration over scale [ls each of the terms can have
perturbative contribution.
In partlcular Frst term has no transverse dependence but is perturbatlve when ,us Ql Qz
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Non-homogeneous part

* Transverse momentum dependence can be also generated when parent parton splits
into daughter partons with non-negligible transverse momenta.

* Need to take into account exact kinematics at the splitting vertex.

Diehl, Ostermeier, Schaefer splitting contribution from gluon splitting
12 12 Qs fa(xl —|—ZC2,I<{,J_) 1 1
Jaraa (@1, @2, Kt kot x) = R, 42 [ r1 + X9 14 as T1 + T2
ha (1 + 2, 61) (21 - (ki + Lr)i(k, — ir)!
- UCL1CL2 R (M7 KvJ.) 1.0 1.2
1+ T2 21 + T2 (ki + 5r)?(ky — 5r)
1 A
k| = §(k1¢ —koy), k1 =k +koi,
Jalz, K1) TMD function
ht (5177 HJL) Boer-Mulders function

Transverse momentum dependent splitting

Need to consistently combine these terms.Work in progress...
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Summary and outlook

Summary & outlook | - initial conditions:

Double integrated PDFs need consistent initial conditions for the
evolution.

Beta functions for single PDF and Dirichlet distributions for double PDF
with suitably matched powers and coefficients are good initial
conditions. The momentum sum rule and quark number sum rule are
satisfied simultaneously.

Extending the formalism: expansion in terms of Dirichlet distributions.
First numerical tests with gluons. Sum rules provide relations between
the powers at small and large x for single and double parton
distributions.

In principle one can include quarks into the formalism; some additional
constraints needed.

Is there any deeper physical meaning to the presented algorithm!?
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Summary and outlook

Summary & outlook 2 - transverse momentum dependence:

First attempt to extend the KMR approach to dPDFs.

Homogeneous term quite straightforward, can be implemented
numerically. Expression will naturally include correlations through the
integrated dPDFs. Additional correlations enter through the
regularization cutoffs.

In-homogeneous term partially can be treated by the same method.

Additional contribution due to perturbative splitting needs to be taken
into account. Goes beyond the accuracy of the KMR framework.

Need to consistently match different contributions. Perform numerical
analysis.
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backup
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Initial conditions: quarks and gluons

Momentum sum rule with quarks: Quark number sum rule:

~ ~

Z[)flfz (2,7?,2) — sz (77,2) _ sz (n2 + 1) Dy, f,(1,n2) — Dg,7,(1,n2) = Aif2Df2 (2)
. Aif2 = N; — 5f2£]7; + 5f267¢

(" )

Ansatz for dPDF with different flavors: | D¢ ¢ (21, 22) = N» g;l_&fl xQ—&fQ (1— 2 — IQ)Bfl 72

f

_f
Ansatz for sPDF : \Df(SU) =Nz~ “ (1 — 37)6 )

* Can perform the same analysis as before.

* Conditions for powers for dPDFs and sPDFs are exactly the same from both momentum and
quark sum rules.

e Can satisfy simultaneously both sum rules:

Small x powers are al? = af? Large x powers: Bfl J2 — 5f2 + ot —1
identical: &fl _ &fl
Implies the
Symmetry with correlation of B2 4 alt = ph 4 o)
respect to the Bfl fa BfQ f1 powers in sPDFs:

parton exchange
27



