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Single scattering process
Single parton scattering: one hard process
Chapter 1. Introduction 7
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Figure 1.3. A schematic depiction of single parton scattering in a hadron-hadron collision.

The object �̂
ff

0
(Q

2
) is the short-distance cross section for the scattering of partons of types f and

f

0. This partonic cross section can be computed in QCD as an expansion in terms of the strong
coupling constant, ↵

s

. The function D

f

1 (x,Q
2
) is known as a single parton distribution function.

This parton distribution function describes the probability density for finding a parton of flavor f
with a longitudinal momentum fraction x at a scale Q

2. As a result of the non-perturbative nature
of partons, parton distribution functions cannot be obtained by utilizing perturbative QCD.

Analogous to single parton scattering, double parton scattering is when two hard collisions occur
per proton-proton interaction. Similarly, we can also represent double parton scattering diagram-
matically as follows:
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Partonic cross section:

Collinear factorization:
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(ŝ, Q2

,m

2)⌦D

f 0

1 (x2, Q
2) +O(

1

Q

2
)

Collins, Soper, Sterman

Given the presence of the hard scale, the cross section (up to power corrections) can be factorized into 
perturbatively calculable partonic cross section and non-perturbative parton distribution functions.
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Double scattering process
Double parton scattering: two hard processesChapter 1. Introduction 8
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Figure 1.4. Here we see one possible diagram depicting double parton scattering.

Similarly to the single parton case, the functions D

f1f2
2 (x1, x2, Q

2
) are called double parton dis-

tribution functions. As one might expect, they describe the probability density for finding two
partons of flavor f1 and f2 with longitudinal momentum fractions x1 and x2 respectively at a scale
Q

2. There has been ample experimental evidence for double parton scattering [5–10]. These dou-
ble parton distribution functions are the primary focus of this analysis.
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Two momentum fractions: 

Two hard scales:

Relative transverse momentum:
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Factorization formula(?):

Diehl,Gaunt,Ostermeier,Ploessl,Schaefer
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Important steps towards the proof in double Drell-Yan process.
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Evolution equations for single PDFsQCD evolution equations for single PDF

I General form of evolution equations for single PDF (t = lnQ2)
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I The integral kernels describe real and virtual parton emission
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Krzysztof Golec-Biernat and Emilia Lewandowska Double parton distributions
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II. EVOLUTION EQUATIONS FOR SPDFS

To set the notation, let us recapitulate the QCD evolu-
tion equations in the collinear approximation for SPDFs,
Df (x,Q), which are used in the description of the single
parton scattering. The general form of these equations is
given by

∂tDf(x, t) =
∑

f ′

∫ 1

0
duKff ′(x, u, t)Df ′(u, t) , (3)

where the evolution parameter t = ln(Q2/Q2
0) and the

parton momentum fraction x obey the condition 0 < x ≤
1. The integral kernels, Kff ′(x, u, t), describe the real
and virtual parton emissions

Kff ′(x, u, t) = KR
ff ′(x, u, t)− δ(u − x) δff ′ KV

f (x, t) . (4)

The real emission kernel KR
ff ′(x, u, t) corresponds to the

parton transition (f ′, u) → (f, x), where the momentum
fraction u > x, and is given by

KR
ff ′(x, u, t) =

1

u
Pff ′(

x

u
, t) θ(u− x) . (5)

The virtual part, KV
f (x, t), can be computed from the

imposed momentum sum rule

∑

f

∫ 1

0
dxxDf (x, t) = 1 (6)

where the normalization to unity means that partons
carry the whole nucleon momentum. Thus we find

xKV
f (x, t) =

∑

f ′

1
∫

0

du uKR
f ′f (u, x, t) . (7)

The functions Pff ′ in Eq. (5) are splitting functions com-
puted perturbatively in QCD in powers of the strong cou-
pling constant:

Pff ′(z, t) =
αs(t)

2π
P (0)
ff ′(z) +

α2
s(t)

(2π)2
P (1)
ff ′(z) + ... . (8)

The first term on the rhs corresponds to the leading log-
arithmic approximation while the higher terms are com-
puted in the next-to-leading approximations. In this way,
the well known DGLAP evolution equations for SPDFs
are obtained

∂t Df (x, t)=
∑

f ′

1
∫

x

dz

z
Pff ′(z, t)Df ′

(

x

z
, t

)

−Df(x, t)
∑

f ′

1
∫

0

dzz Pf ′f (z, t) . (9)

Note that the diagonal in flavors splitting functions,
Pff (z, t), have a simple pole singularity at z = 1 which is
removed by the virtual term [so called (+) prescription].

III. EVOLUTION EQUATIONS FOR DPDFS

The evolution equations for the DPDFs are only known
for q = 0 in the leading logarithmic approximation [1–
3, 6–8]. The first discussion of the next-to-leading cor-
rections can be found in [10]. We start from considering
two equal hard scales, Q1 = Q2 ≡ Q, and introduce the
following notation for the DPDFs in such a case

Df1f2(x1, x2, t) = Df1f2(x1, x2, Q,Q,q = 0) . (10)

A phenomenological discussion of the case q %= 0 in the
context of evolution equations, discussed below, can be
found in [13, 41].
The QCD evolution equations take general form

∂tDf1f2(x1, x2, t)

=
∑

f ′

∫ 1−x2

0
duKf1f ′(x1, u, t)Df ′f2(u, x2, t)

+
∑

f ′

∫ 1−x1

0
duKf2f ′(x2, u, t)Df1f ′(x1, u, t)

+
∑

f ′

KR
f ′→f1f2

(x1, x2, t)Df ′(x1 + x2, t), (11)

where the integral kernels are given by Eq.(4) with the
real part (5) in the leading logarithmic approximation
and the virtual part found from Eq. (7). The two in-
tegrals in the above describe the DGLAP evolution of a
single parton with the second parton treated as a spec-
tator. This gives the upper integration limits resulting
from condition (2).
The third term needs special attention. It describes the

real emission splitting of a single parton into two partons
which undergo two independent hard scatterings. This is
why the SPDFs appear here and the evolution equations
(3) and (11) form a coupled set of equations which has
to be solved simultaneously. In the leading logarithmic
approximation, there is only one parton flavor, f ′, which
leads to two parton flavors, f1 and f2. Thus, we have
the following splittings: q → qg, q → qg, g → qq, and
g → gg. In such a case

KR
f ′→f1f2

(x1, x2, t) =
αs(t)

2π

1

x1 + x2
P (0)
f ′f1

(

x1

x1 + x2

)

(12)

where P (0)
f ′f1

are splitting functions in the leading loga-
rithmic approximation. It can easily be checked that the

splitting functions P (0)
f ′f2

(x2/(x1 + x2)) can also be used
in this case. Thus the rhs. of the evolution equations
(11) is invariant with respect to the parton interchange,
(f1, x1) ↔ (f2, x2). If the initial conditions for them,
specified at some initial scale t0, are parton exchange
symmetric,

Df1f2(x1, x2, t0) = Df2f1(x2, x1, t0) , (13)
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DGLAP evolution equation for single PDF:

Splitting functions:

Real emission kernel:

Real and virtual parts of the kernel:

t = lnQ2/Q2
0

Evolution variable:

5 Anna Stasto, ISMD2016



Evolution equations for single PDFsQCD evolution equations for single PDF

I General form of evolution equations for single PDF (t = lnQ2)

@
t

D
f

(x , t) =
X

f

0

Z

1

0

duK
↵

0(x , u, t)D
f

0(u, t)

I The integral kernels describe real and virtual parton emission

u

x

+

x

u

x

K
↵

0(x , u, t) = KR

↵

0(x , u, t)� �(u � x) �
↵

0 KV

f

(x , t)

Krzysztof Golec-Biernat and Emilia Lewandowska Double parton distributions

2

II. EVOLUTION EQUATIONS FOR SPDFS

To set the notation, let us recapitulate the QCD evolu-
tion equations in the collinear approximation for SPDFs,
Df (x,Q), which are used in the description of the single
parton scattering. The general form of these equations is
given by

∂tDf(x, t) =
∑

f ′

∫ 1

0
duKff ′(x, u, t)Df ′(u, t) , (3)

where the evolution parameter t = ln(Q2/Q2
0) and the

parton momentum fraction x obey the condition 0 < x ≤
1. The integral kernels, Kff ′(x, u, t), describe the real
and virtual parton emissions

Kff ′(x, u, t) = KR
ff ′(x, u, t)− δ(u − x) δff ′ KV

f (x, t) . (4)

The real emission kernel KR
ff ′(x, u, t) corresponds to the

parton transition (f ′, u) → (f, x), where the momentum
fraction u > x, and is given by

KR
ff ′(x, u, t) =

1

u
Pff ′(

x

u
, t) θ(u− x) . (5)

The virtual part, KV
f (x, t), can be computed from the

imposed momentum sum rule

∑

f

∫ 1

0
dxxDf (x, t) = 1 (6)

where the normalization to unity means that partons
carry the whole nucleon momentum. Thus we find

xKV
f (x, t) =

∑

f ′

1
∫

0

du uKR
f ′f (u, x, t) . (7)

The functions Pff ′ in Eq. (5) are splitting functions com-
puted perturbatively in QCD in powers of the strong cou-
pling constant:

Pff ′(z, t) =
αs(t)

2π
P (0)
ff ′(z) +

α2
s(t)

(2π)2
P (1)
ff ′(z) + ... . (8)

The first term on the rhs corresponds to the leading log-
arithmic approximation while the higher terms are com-
puted in the next-to-leading approximations. In this way,
the well known DGLAP evolution equations for SPDFs
are obtained

∂t Df (x, t)=
∑

f ′

1
∫

x

dz

z
Pff ′(z, t)Df ′

(

x

z
, t

)

−Df(x, t)
∑

f ′

1
∫

0

dzz Pf ′f (z, t) . (9)

Note that the diagonal in flavors splitting functions,
Pff (z, t), have a simple pole singularity at z = 1 which is
removed by the virtual term [so called (+) prescription].

III. EVOLUTION EQUATIONS FOR DPDFS

The evolution equations for the DPDFs are only known
for q = 0 in the leading logarithmic approximation [1–
3, 6–8]. The first discussion of the next-to-leading cor-
rections can be found in [10]. We start from considering
two equal hard scales, Q1 = Q2 ≡ Q, and introduce the
following notation for the DPDFs in such a case

Df1f2(x1, x2, t) = Df1f2(x1, x2, Q,Q,q = 0) . (10)

A phenomenological discussion of the case q %= 0 in the
context of evolution equations, discussed below, can be
found in [13, 41].
The QCD evolution equations take general form

∂tDf1f2(x1, x2, t)

=
∑

f ′

∫ 1−x2

0
duKf1f ′(x1, u, t)Df ′f2(u, x2, t)

+
∑

f ′

∫ 1−x1

0
duKf2f ′(x2, u, t)Df1f ′(x1, u, t)

+
∑

f ′

KR
f ′→f1f2

(x1, x2, t)Df ′(x1 + x2, t), (11)

where the integral kernels are given by Eq.(4) with the
real part (5) in the leading logarithmic approximation
and the virtual part found from Eq. (7). The two in-
tegrals in the above describe the DGLAP evolution of a
single parton with the second parton treated as a spec-
tator. This gives the upper integration limits resulting
from condition (2).
The third term needs special attention. It describes the

real emission splitting of a single parton into two partons
which undergo two independent hard scatterings. This is
why the SPDFs appear here and the evolution equations
(3) and (11) form a coupled set of equations which has
to be solved simultaneously. In the leading logarithmic
approximation, there is only one parton flavor, f ′, which
leads to two parton flavors, f1 and f2. Thus, we have
the following splittings: q → qg, q → qg, g → qq, and
g → gg. In such a case

KR
f ′→f1f2

(x1, x2, t) =
αs(t)

2π

1

x1 + x2
P (0)
f ′f1

(

x1

x1 + x2

)

(12)

where P (0)
f ′f1

are splitting functions in the leading loga-
rithmic approximation. It can easily be checked that the

splitting functions P (0)
f ′f2

(x2/(x1 + x2)) can also be used
in this case. Thus the rhs. of the evolution equations
(11) is invariant with respect to the parton interchange,
(f1, x1) ↔ (f2, x2). If the initial conditions for them,
specified at some initial scale t0, are parton exchange
symmetric,

Df1f2(x1, x2, t0) = Df2f1(x2, x1, t0) , (13)
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tegrals in the above describe the DGLAP evolution of a
single parton with the second parton treated as a spec-
tator. This gives the upper integration limits resulting
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The third term needs special attention. It describes the

real emission splitting of a single parton into two partons
which undergo two independent hard scatterings. This is
why the SPDFs appear here and the evolution equations
(3) and (11) form a coupled set of equations which has
to be solved simultaneously. In the leading logarithmic
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from condition (2).
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II. EVOLUTION EQUATIONS FOR SPDFS
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Note that the diagonal in flavors splitting functions,
Pff (z, t), have a simple pole singularity at z = 1 which is
removed by the virtual term [so called (+) prescription].

III. EVOLUTION EQUATIONS FOR DPDFS

The evolution equations for the DPDFs are only known
for q = 0 in the leading logarithmic approximation [1–
3, 6–8]. The first discussion of the next-to-leading cor-
rections can be found in [10]. We start from considering
two equal hard scales, Q1 = Q2 ≡ Q, and introduce the
following notation for the DPDFs in such a case

Df1f2(x1, x2, t) = Df1f2(x1, x2, Q,Q,q = 0) . (10)

A phenomenological discussion of the case q %= 0 in the
context of evolution equations, discussed below, can be
found in [13, 41].
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where the integral kernels are given by Eq.(4) with the
real part (5) in the leading logarithmic approximation
and the virtual part found from Eq. (7). The two in-
tegrals in the above describe the DGLAP evolution of a
single parton with the second parton treated as a spec-
tator. This gives the upper integration limits resulting
from condition (2).
The third term needs special attention. It describes the

real emission splitting of a single parton into two partons
which undergo two independent hard scatterings. This is
why the SPDFs appear here and the evolution equations
(3) and (11) form a coupled set of equations which has
to be solved simultaneously. In the leading logarithmic
approximation, there is only one parton flavor, f ′, which
leads to two parton flavors, f1 and f2. Thus, we have
the following splittings: q → qg, q → qg, g → qq, and
g → gg. In such a case

KR
f ′→f1f2

(x1, x2, t) =
αs(t)

2π

1

x1 + x2
P (0)
f ′f1

(

x1

x1 + x2

)

(12)

where P (0)
f ′f1

are splitting functions in the leading loga-
rithmic approximation. It can easily be checked that the

splitting functions P (0)
f ′f2

(x2/(x1 + x2)) can also be used
in this case. Thus the rhs. of the evolution equations
(11) is invariant with respect to the parton interchange,
(f1, x1) ↔ (f2, x2). If the initial conditions for them,
specified at some initial scale t0, are parton exchange
symmetric,

Df1f2(x1, x2, t0) = Df2f1(x2, x1, t0) , (13)
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II. EVOLUTION EQUATIONS FOR SPDFS

To set the notation, let us recapitulate the QCD evolu-
tion equations in the collinear approximation for SPDFs,
Df (x,Q), which are used in the description of the single
parton scattering. The general form of these equations is
given by

∂tDf(x, t) =
∑

f ′

∫ 1

0
duKff ′(x, u, t)Df ′(u, t) , (3)

where the evolution parameter t = ln(Q2/Q2
0) and the

parton momentum fraction x obey the condition 0 < x ≤
1. The integral kernels, Kff ′(x, u, t), describe the real
and virtual parton emissions

Kff ′(x, u, t) = KR
ff ′(x, u, t)− δ(u − x) δff ′ KV

f (x, t) . (4)

The real emission kernel KR
ff ′(x, u, t) corresponds to the

parton transition (f ′, u) → (f, x), where the momentum
fraction u > x, and is given by

KR
ff ′(x, u, t) =

1

u
Pff ′(

x

u
, t) θ(u− x) . (5)

The virtual part, KV
f (x, t), can be computed from the

imposed momentum sum rule

∑

f

∫ 1

0
dxxDf (x, t) = 1 (6)

where the normalization to unity means that partons
carry the whole nucleon momentum. Thus we find

xKV
f (x, t) =

∑

f ′

1
∫

0

du uKR
f ′f (u, x, t) . (7)

The functions Pff ′ in Eq. (5) are splitting functions com-
puted perturbatively in QCD in powers of the strong cou-
pling constant:

Pff ′(z, t) =
αs(t)

2π
P (0)
ff ′(z) +

α2
s(t)

(2π)2
P (1)
ff ′(z) + ... . (8)

The first term on the rhs corresponds to the leading log-
arithmic approximation while the higher terms are com-
puted in the next-to-leading approximations. In this way,
the well known DGLAP evolution equations for SPDFs
are obtained

∂t Df (x, t)=
∑

f ′

1
∫

x

dz

z
Pff ′(z, t)Df ′

(

x

z
, t

)

−Df(x, t)
∑

f ′

1
∫

0

dzz Pf ′f (z, t) . (9)

Note that the diagonal in flavors splitting functions,
Pff (z, t), have a simple pole singularity at z = 1 which is
removed by the virtual term [so called (+) prescription].

III. EVOLUTION EQUATIONS FOR DPDFS

The evolution equations for the DPDFs are only known
for q = 0 in the leading logarithmic approximation [1–
3, 6–8]. The first discussion of the next-to-leading cor-
rections can be found in [10]. We start from considering
two equal hard scales, Q1 = Q2 ≡ Q, and introduce the
following notation for the DPDFs in such a case

Df1f2(x1, x2, t) = Df1f2(x1, x2, Q,Q,q = 0) . (10)

A phenomenological discussion of the case q %= 0 in the
context of evolution equations, discussed below, can be
found in [13, 41].
The QCD evolution equations take general form
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=
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+
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0
duKf2f ′(x2, u, t)Df1f ′(x1, u, t)

+
∑

f ′

KR
f ′→f1f2

(x1, x2, t)Df ′(x1 + x2, t), (11)

where the integral kernels are given by Eq.(4) with the
real part (5) in the leading logarithmic approximation
and the virtual part found from Eq. (7). The two in-
tegrals in the above describe the DGLAP evolution of a
single parton with the second parton treated as a spec-
tator. This gives the upper integration limits resulting
from condition (2).
The third term needs special attention. It describes the

real emission splitting of a single parton into two partons
which undergo two independent hard scatterings. This is
why the SPDFs appear here and the evolution equations
(3) and (11) form a coupled set of equations which has
to be solved simultaneously. In the leading logarithmic
approximation, there is only one parton flavor, f ′, which
leads to two parton flavors, f1 and f2. Thus, we have
the following splittings: q → qg, q → qg, g → qq, and
g → gg. In such a case

KR
f ′→f1f2

(x1, x2, t) =
αs(t)

2π

1

x1 + x2
P (0)
f ′f1

(

x1

x1 + x2

)

(12)

where P (0)
f ′f1

are splitting functions in the leading loga-
rithmic approximation. It can easily be checked that the

splitting functions P (0)
f ′f2

(x2/(x1 + x2)) can also be used
in this case. Thus the rhs. of the evolution equations
(11) is invariant with respect to the parton interchange,
(f1, x1) ↔ (f2, x2). If the initial conditions for them,
specified at some initial scale t0, are parton exchange
symmetric,

Df1f2(x1, x2, t0) = Df2f1(x2, x1, t0) , (13)
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DGLAP evolution equation for double PDF:

2

II. EVOLUTION EQUATIONS FOR SPDFS

To set the notation, let us recapitulate the QCD evolu-
tion equations in the collinear approximation for SPDFs,
Df (x,Q), which are used in the description of the single
parton scattering. The general form of these equations is
given by

∂tDf(x, t) =
∑

f ′

∫ 1

0
duKff ′(x, u, t)Df ′(u, t) , (3)

where the evolution parameter t = ln(Q2/Q2
0) and the

parton momentum fraction x obey the condition 0 < x ≤
1. The integral kernels, Kff ′(x, u, t), describe the real
and virtual parton emissions

Kff ′(x, u, t) = KR
ff ′(x, u, t)− δ(u − x) δff ′ KV

f (x, t) . (4)

The real emission kernel KR
ff ′(x, u, t) corresponds to the

parton transition (f ′, u) → (f, x), where the momentum
fraction u > x, and is given by

KR
ff ′(x, u, t) =

1

u
Pff ′(

x

u
, t) θ(u− x) . (5)

The virtual part, KV
f (x, t), can be computed from the

imposed momentum sum rule

∑

f

∫ 1

0
dxxDf (x, t) = 1 (6)

where the normalization to unity means that partons
carry the whole nucleon momentum. Thus we find

xKV
f (x, t) =

∑

f ′

1
∫

0

du uKR
f ′f (u, x, t) . (7)

The functions Pff ′ in Eq. (5) are splitting functions com-
puted perturbatively in QCD in powers of the strong cou-
pling constant:

Pff ′(z, t) =
αs(t)

2π
P (0)
ff ′(z) +

α2
s(t)

(2π)2
P (1)
ff ′(z) + ... . (8)

The first term on the rhs corresponds to the leading log-
arithmic approximation while the higher terms are com-
puted in the next-to-leading approximations. In this way,
the well known DGLAP evolution equations for SPDFs
are obtained

∂t Df (x, t)=
∑

f ′

1
∫

x

dz

z
Pff ′(z, t)Df ′

(

x

z
, t

)

−Df(x, t)
∑

f ′

1
∫

0

dzz Pf ′f (z, t) . (9)

Note that the diagonal in flavors splitting functions,
Pff (z, t), have a simple pole singularity at z = 1 which is
removed by the virtual term [so called (+) prescription].

III. EVOLUTION EQUATIONS FOR DPDFS

The evolution equations for the DPDFs are only known
for q = 0 in the leading logarithmic approximation [1–
3, 6–8]. The first discussion of the next-to-leading cor-
rections can be found in [10]. We start from considering
two equal hard scales, Q1 = Q2 ≡ Q, and introduce the
following notation for the DPDFs in such a case

Df1f2(x1, x2, t) = Df1f2(x1, x2, Q,Q,q = 0) . (10)

A phenomenological discussion of the case q %= 0 in the
context of evolution equations, discussed below, can be
found in [13, 41].
The QCD evolution equations take general form

∂tDf1f2(x1, x2, t)

=
∑

f ′

∫ 1−x2

0
duKf1f ′(x1, u, t)Df ′f2(u, x2, t)

+
∑

f ′

∫ 1−x1

0
duKf2f ′(x2, u, t)Df1f ′(x1, u, t)

+
∑

f ′

KR
f ′→f1f2

(x1, x2, t)Df ′(x1 + x2, t), (11)

where the integral kernels are given by Eq.(4) with the
real part (5) in the leading logarithmic approximation
and the virtual part found from Eq. (7). The two in-
tegrals in the above describe the DGLAP evolution of a
single parton with the second parton treated as a spec-
tator. This gives the upper integration limits resulting
from condition (2).
The third term needs special attention. It describes the

real emission splitting of a single parton into two partons
which undergo two independent hard scatterings. This is
why the SPDFs appear here and the evolution equations
(3) and (11) form a coupled set of equations which has
to be solved simultaneously. In the leading logarithmic
approximation, there is only one parton flavor, f ′, which
leads to two parton flavors, f1 and f2. Thus, we have
the following splittings: q → qg, q → qg, g → qq, and
g → gg. In such a case

KR
f ′→f1f2

(x1, x2, t) =
αs(t)

2π

1

x1 + x2
P (0)
f ′f1

(

x1

x1 + x2

)

(12)

where P (0)
f ′f1

are splitting functions in the leading loga-
rithmic approximation. It can easily be checked that the

splitting functions P (0)
f ′f2

(x2/(x1 + x2)) can also be used
in this case. Thus the rhs. of the evolution equations
(11) is invariant with respect to the parton interchange,
(f1, x1) ↔ (f2, x2). If the initial conditions for them,
specified at some initial scale t0, are parton exchange
symmetric,

Df1f2(x1, x2, t0) = Df2f1(x2, x1, t0) , (13)

Inhomogeneous term
Splitting term of one parton into two:

Evolution equation for double PDFs is coupled with single PDFs. 

Need to be solved together with suitable initial conditions.
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Sum rules for single and double PDFs
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II. EVOLUTION EQUATIONS FOR SPDFS

To set the notation, let us recapitulate the QCD evolu-
tion equations in the collinear approximation for SPDFs,
Df (x,Q), which are used in the description of the single
parton scattering. The general form of these equations is
given by

∂tDf(x, t) =
∑

f ′

∫ 1

0
duKff ′(x, u, t)Df ′(u, t) , (3)

where the evolution parameter t = ln(Q2/Q2
0) and the

parton momentum fraction x obey the condition 0 < x ≤
1. The integral kernels, Kff ′(x, u, t), describe the real
and virtual parton emissions

Kff ′(x, u, t) = KR
ff ′(x, u, t)− δ(u − x) δff ′ KV

f (x, t) . (4)

The real emission kernel KR
ff ′(x, u, t) corresponds to the

parton transition (f ′, u) → (f, x), where the momentum
fraction u > x, and is given by

KR
ff ′(x, u, t) =

1

u
Pff ′(

x

u
, t) θ(u− x) . (5)

The virtual part, KV
f (x, t), can be computed from the

imposed momentum sum rule

∑

f

∫ 1

0
dxxDf (x, t) = 1 (6)

where the normalization to unity means that partons
carry the whole nucleon momentum. Thus we find

xKV
f (x, t) =

∑

f ′

1
∫

0

du uKR
f ′f (u, x, t) . (7)

The functions Pff ′ in Eq. (5) are splitting functions com-
puted perturbatively in QCD in powers of the strong cou-
pling constant:

Pff ′(z, t) =
αs(t)

2π
P (0)
ff ′(z) +

α2
s(t)

(2π)2
P (1)
ff ′(z) + ... . (8)

The first term on the rhs corresponds to the leading log-
arithmic approximation while the higher terms are com-
puted in the next-to-leading approximations. In this way,
the well known DGLAP evolution equations for SPDFs
are obtained

∂t Df (x, t)=
∑

f ′

1
∫

x

dz

z
Pff ′(z, t)Df ′

(

x

z
, t

)

−Df(x, t)
∑

f ′

1
∫

0

dzz Pf ′f (z, t) . (9)

Note that the diagonal in flavors splitting functions,
Pff (z, t), have a simple pole singularity at z = 1 which is
removed by the virtual term [so called (+) prescription].

III. EVOLUTION EQUATIONS FOR DPDFS

The evolution equations for the DPDFs are only known
for q = 0 in the leading logarithmic approximation [1–
3, 6–8]. The first discussion of the next-to-leading cor-
rections can be found in [10]. We start from considering
two equal hard scales, Q1 = Q2 ≡ Q, and introduce the
following notation for the DPDFs in such a case

Df1f2(x1, x2, t) = Df1f2(x1, x2, Q,Q,q = 0) . (10)

A phenomenological discussion of the case q %= 0 in the
context of evolution equations, discussed below, can be
found in [13, 41].
The QCD evolution equations take general form

∂tDf1f2(x1, x2, t)

=
∑

f ′

∫ 1−x2

0
duKf1f ′(x1, u, t)Df ′f2(u, x2, t)

+
∑

f ′

∫ 1−x1

0
duKf2f ′(x2, u, t)Df1f ′(x1, u, t)

+
∑

f ′

KR
f ′→f1f2

(x1, x2, t)Df ′(x1 + x2, t), (11)

where the integral kernels are given by Eq.(4) with the
real part (5) in the leading logarithmic approximation
and the virtual part found from Eq. (7). The two in-
tegrals in the above describe the DGLAP evolution of a
single parton with the second parton treated as a spec-
tator. This gives the upper integration limits resulting
from condition (2).
The third term needs special attention. It describes the

real emission splitting of a single parton into two partons
which undergo two independent hard scatterings. This is
why the SPDFs appear here and the evolution equations
(3) and (11) form a coupled set of equations which has
to be solved simultaneously. In the leading logarithmic
approximation, there is only one parton flavor, f ′, which
leads to two parton flavors, f1 and f2. Thus, we have
the following splittings: q → qg, q → qg, g → qq, and
g → gg. In such a case

KR
f ′→f1f2

(x1, x2, t) =
αs(t)

2π

1

x1 + x2
P (0)
f ′f1

(

x1

x1 + x2

)

(12)

where P (0)
f ′f1

are splitting functions in the leading loga-
rithmic approximation. It can easily be checked that the

splitting functions P (0)
f ′f2

(x2/(x1 + x2)) can also be used
in this case. Thus the rhs. of the evolution equations
(11) is invariant with respect to the parton interchange,
(f1, x1) ↔ (f2, x2). If the initial conditions for them,
specified at some initial scale t0, are parton exchange
symmetric,

Df1f2(x1, x2, t0) = Df2f1(x2, x1, t0) , (13)

Momentum sum rule for single PDFs

Quark number sum rule for single PDFs
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FIG. 1: Sum rules violation by the symmetric input (19). The ratio should be equal to 1 if the sum rules are satisfied.

the evolution will preserve this symmetry for any value
of t.
In the case when the two hard scales are significantly

different, e.g. Q1 ! Q2, the large logarithms ln(Q2
2/Q

2
1)

appear. They have to be resummed which leads to the
DGLAP evolution equation with respect to the second
parton

∂t2Df1f2(x1, x2, t1, t2)

=
∑

f ′

1−x1
∫

0

duKf2f ′(x2, u, t2)Df1f ′(x1, u, t1, t2), (14)

where t1,2 = ln(Q2
1,2/Q

2
0). Thus the evolution has two

steps, from equal initial scales (t0, t0) to the equal fi-
nal scales (t1, t1), according to Eq. (11), and then to
the scales (t1, t2), according to Eq. (14). However, we
do not discuss such a case in our analysis, concentrating
only on the first step of the evolution. We also refrain
from discussing the impact parameter representation of
the DPDFs and corresponding evolution equations, send-
ing the reader to Ref. [16].

IV. SUM RULES FOR DPDFS

The DGLAP evolution equations (3) obey the momen-
tum sum rule (6), while the evolution equations (11) pre-
serve a new momentum sum rule:

∑

f1

∫ 1−x2

0
dx1x1

Df1f2(x1, x2, t)

Df2(x2, t)
= 1− x2 . (15)

This relation can be understood by treating the ratio of
the parton distributions under the integral as the condi-
tional probability to find parton f1 with the momentum
fraction x1, while the second parton characteristics, x2

and f2, are fixed. In such a the total momentum fraction
carried by partons f1 equals (1 − x2). In this way, the

momentum sum rule (15) relates the double and single
parton distribution functions for any value of t:

∑

f1

∫ 1−x2

0
dx1x1Df1f2(x1, x2, t)=(1− x2)Df2(x2, t). (16)

The valence quark number sum rule for the SPDFs has
the well-known form

∫ 1

0
dx {Dqi(x, t)−Dq̄i(x, t)} = Ni , (17)

where Ni is the number of valence quarks qi. For the
DPDFs, the analogous sum rule depends on the flavor of
the second parton f2 (see Refs. [8, 42] for more details):

∫ 1−x2

0
dx1{Dqif2(x1, x2, t)−Dq̄if2(x1, x2, t)}

=







Ni Df2(x2, t) for f2 #= qi, q̄i
(Ni − 1)Df2(x2, t) for f2 = qi
(Ni + 1)Df2(x2, t) for f2 = q̄i .

(18)

It is important to emphasize that the momentum and
valence quark number sum rules are conserved by the
evolution equations (3) and (11) once they are imposed
at an initial value t0. If not true, the sum rules will not
be exactly satisfied during evolution.
The sum rules (16) and (18) are written with respect
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Valence quark number sum rule for double PDFs

If sum rules hold for initial conditions they will hold for higher scales after the evolution.
How to consistently impose the initial conditions for sPDF and dPDF with sum rules?
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Factorizable ansatz, could work well for rather small x but is inconsistent with sum rules.

Problem of initial conditions in dPDFs

8 Anna Stasto, ISMD2016

Usually simplifying assumption is taken:

Improvement with correlating factor:

Df1f2(x1, x2) = Df1(x1)Df2(x2)

Df1f2(x1, x2) = Df1(x1)Df2(x2)
(1� x1 � x2)2

(1� x1)2+n1(1� x2)2+n2

Gaunt, Stirling

Takes into account some correlation but still does not obey sum rules exactly.



Initial conditions:  Dirichlet distribution

8

IX. DIRICHLET DISTRIBUTION

Let us start with the simple ansatz for the single parton distribution that has the required properties

• Is properly normalized

• Has a Regge type behavior at small x

• Vanishes at x = 1

In the following we shall consider the single channel only, that means gluons, generalization to quarks will be presented
in the next section. We take the ansatz for the single parton distribution to be of the form of the beta distribution

D(x) = N1 x
−α (1− x)β , (40)

where N1 is the normalization which can be evaluated from the momentum sum rule of the single PDF

∫ 1

0
dxxD(x) = 1 , (41)

which gives us

N1 =
1

B(2− α, 1 + β)
, (42)

where B is the Euler Beta function. In the following we shall assume that α < 2 and β > 0.
The Mellin transform of the single PDF with the ansatz (40) is of the form

D̃(n) =
1

B(2− α, 1 + β)

∫ 1

0
dxxn−1x−α(1− x)β =

B(n− α,β + 1)

B(2 − α,β + 1)
. (43)

Now we take the ansatz for the double parton distribution which will be of the form

D(x1, x2) = N2 x
−α̃
1 x−α̃

2 (1− x1 − x2)
β̃ . (44)

Here, since we are considering one channel only, that is gluons, therefore we can safely assume that the powers which
govern the small x behaviour are the same. N2 is the normalization which will be fixed later, it depends on α̃ and β̃.
The above ansatz is of the form of the Dirichlet distribution which is a continuous multivariate probability distribution
of general form

f(x1, x2, . . . , xM ; a1, a2, . . . , aM ) ∼
M
∏

k=1

xak (45)

where

x1, . . . , xM−1 > 0, xM = 1−
M−1
∑

i=1

xi .

In our case we consider M = 3.
Let us perform the double Mellin transform of the ansatz for the double parton distribution

D̃(n1, n2) =

∫ 1

0
dx1x

n1−1
1

∫ 1

0
dx2x

n2−1
2 D(x1, x2) , (46)

Inspecting the behavior of the ansatz (IX) we see that the double Mellin transform has to be taken over the triangle
x1 + x2 < 1. The result is

D̃(n1, n2) = N2
Γ(n1 − α̃)Γ(n2 − α̃)Γ(1 + β̃)

Γ(n1 + n2 + 1 + β̃ − 2α̃)
. (47)

Consider Beta distribution and gluons only (for now)

D̃(n) =

Z 1

0
dxx

n�1
D(x)

Mellin transform: Momentum sum rule in Mellin space:

D̃(2) = 1
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Take the ansatz for double distribution in the form of the Dirichlet distribution:
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Initial conditions: relating the parameters
The momentum sum rule for dPDFs in Mellin space

9

The combination of Γ functions in the above equation is a multinomial beta function

B(a1, a2, a3) ≡
Γ(a1)Γ(a2)Γ(a3)

Γ(a1 + a2 + a3)
. (48)

Now let us inspect the momentum sum rule in the Mellin space for the single channel case, which read

D̃(n1, 2) = D̃(n1)− D̃(n1 + 1) , (49)

and likewise

D̃(2, n2) = D̃(n2)− D̃(n2 + 1) . (50)

We take the Mellin transform of the double parton distribution (47) and set n2 = 2

D̃(n1, 2) = N2
Γ(n1 − α̃)Γ(2− α̃)Γ(1 + β̃)

Γ(n1 + 3 + β̃ − 2α̃)
. (51)

This gives the left hand side of Eq.49. The right hand side of the same sum rule (49) in terms of moments of single
parton distribution is

D̃(n1)− D̃(n1 + 1) =
1

B(2 − α,β + 1)

(

B(n1 − α,β + 1)−B(n1 + 1− α,β + 1)
)

=
B(n1 − α,β + 2)

B(2 − α,β + 1)

=
1

B(2 − α,β + 1)

Γ(n1 − α)Γ(2 + β)

Γ(2 + β + n1 − α)
, (52)

where we have used the following property of the Beta function

B(a, b) = B(a+ 1, b) +B(a, b+ 1) . (53)

For the momentum sum rule to be satisfied we need expression in (51) to be equal to (52). We can see that we can
do this by simultaneously requiring

α̃ = α, β̃ = β + α− 1 , (54)

and setting the normalization constant (which does not depend on n1) equal to

N2 =
1

B(2 − α,α+ β)B(2 − α,β + 1)
=

1

B(2− α, β̃ + 1)B(2− α,β + 1)
. (55)

The first observation is that the powers which govern the small x behaviour stay the same in the single and double
parton distribution, which is reflected by the fact that α̃ = α. This is physically understandable, since we expect that
momentum correlation will not affect partons with very small x. The second comment is that the powers β and β̃
differ by α, i.e. the growth of partons at small x actually is correlated with the power at large x. The third comment
is that the results are obviously symmetric with respect to the change of n1 and n2 which is required physically and
which is satisfied by this example because of the property of the Beta function (53).

A. Generalization: expansion in terms of Dirichlet distributions

Now let us generalize this case by assuming that we can expand the single parton distribution in the series of beta
distributions with different power coefficients αk,βk and weights ak. That is, in the momentum space we would have

D(x) = N1

K
∑

k=1

akx
−αk (1− x)βk , (56)

and without the loss of generality we can set a1 = 1. In principle there is no constraint on the value of K, the above
sum could contain an infinite number of terms. Later on for practical purposes we shall consider a finite value for K.
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This gives the left hand side of Eq.49. The right hand side of the same sum rule (49) in terms of moments of single
parton distribution is

D̃(n1)− D̃(n1 + 1) =
1

B(2 − α,β + 1)

(

B(n1 − α,β + 1)−B(n1 + 1− α,β + 1)
)

=
B(n1 − α,β + 2)

B(2 − α,β + 1)

=
1

B(2 − α,β + 1)

Γ(n1 − α)Γ(2 + β)

Γ(2 + β + n1 − α)
, (52)
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parton distribution, which is reflected by the fact that α̃ = α. This is physically understandable, since we expect that
momentum correlation will not affect partons with very small x. The second comment is that the powers β and β̃
differ by α, i.e. the growth of partons at small x actually is correlated with the power at large x. The third comment
is that the results are obviously symmetric with respect to the change of n1 and n2 which is required physically and
which is satisfied by this example because of the property of the Beta function (53).
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and without the loss of generality we can set a1 = 1. In principle there is no constraint on the value of K, the above
sum could contain an infinite number of terms. Later on for practical purposes we shall consider a finite value for K.
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differ by α, i.e. the growth of partons at small x actually is correlated with the power at large x. The third comment
is that the results are obviously symmetric with respect to the change of n1 and n2 which is required physically and
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A. Generalization: expansion in terms of Dirichlet distributions
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distributions with different power coefficients αk,βk and weights ak. That is, in the momentum space we would have
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and without the loss of generality we can set a1 = 1. In principle there is no constraint on the value of K, the above
sum could contain an infinite number of terms. Later on for practical purposes we shall consider a finite value for K.
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The first observation is that the powers which govern the small x behaviour stay the same in the single and double
parton distribution, which is reflected by the fact that α̃ = α. This is physically understandable, since we expect that
momentum correlation will not affect partons with very small x. The second comment is that the powers β and β̃
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Now let us generalize this case by assuming that we can expand the single parton distribution in the series of beta
distributions with different power coefficients αk,βk and weights ak. That is, in the momentum space we would have
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and without the loss of generality we can set a1 = 1. In principle there is no constraint on the value of K, the above
sum could contain an infinite number of terms. Later on for practical purposes we shall consider a finite value for K.
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IX. DIRICHLET DISTRIBUTION

Let us start with the simple ansatz for the single parton distribution that has the required properties

• Is properly normalized

• Has a Regge type behavior at small x

• Vanishes at x = 1

In the following we shall consider the single channel only, that means gluons, generalization to quarks will be presented
in the next section. We take the ansatz for the single parton distribution to be of the form of the beta distribution

D(x) = N1 x
−α (1− x)β , (40)

where N1 is the normalization which can be evaluated from the momentum sum rule of the single PDF

∫ 1

0
dxxD(x) = 1 , (41)

which gives us

N1 =
1

B(2− α, 1 + β)
, (42)

where B is the Euler Beta function. In the following we shall assume that α < 2 and β > 0.
The Mellin transform of the single PDF with the ansatz (40) is of the form

D̃(n) =
1

B(2− α, 1 + β)

∫ 1

0
dxxn−1x−α(1− x)β =

B(n− α,β + 1)

B(2 − α,β + 1)
. (43)

Now we take the ansatz for the double parton distribution which will be of the form

D(x1, x2) = N2 x
−α̃
1 x−α̃

2 (1− x1 − x2)
β̃ . (44)

Here, since we are considering one channel only, that is gluons, therefore we can safely assume that the powers which
govern the small x behaviour are the same. N2 is the normalization which will be fixed later, it depends on α̃ and β̃.
The above ansatz is of the form of the Dirichlet distribution which is a continuous multivariate probability distribution
of general form

f(x1, x2, . . . , xM ; a1, a2, . . . , aM ) ∼
M
∏

k=1

xak (45)

where

x1, . . . , xM−1 > 0, xM = 1−
M−1
∑

i=1

xi .

In our case we consider M = 3.
Let us perform the double Mellin transform of the ansatz for the double parton distribution

D̃(n1, n2) =

∫ 1

0
dx1x

n1−1
1

∫ 1

0
dx2x

n2−1
2 D(x1, x2) , (46)

Inspecting the behavior of the ansatz (IX) we see that the double Mellin transform has to be taken over the triangle
x1 + x2 < 1. The result is

D̃(n1, n2) = N2
Γ(n1 − α̃)Γ(n2 − α̃)Γ(1 + β̃)

Γ(n1 + n2 + 1 + β̃ − 2α̃)
. (47)
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The above ansatz is of the form of the Dirichlet distribution which is a continuous multivariate probability distribution
of general form

f(x1, x2, . . . , xM ; a1, a2, . . . , aM ) ∼
M
∏

k=1

xak (45)

where

x1, . . . , xM−1 > 0, xM = 1−
M−1
∑

i=1

xi .

In our case we consider M = 3.
Let us perform the double Mellin transform of the ansatz for the double parton distribution

D̃(n1, n2) =

∫ 1

0
dx1x

n1−1
1

∫ 1

0
dx2x

n2−1
2 D(x1, x2) , (46)

Inspecting the behavior of the ansatz (IX) we see that the double Mellin transform has to be taken over the triangle
x1 + x2 < 1. The result is

D̃(n1, n2) = N2
Γ(n1 − α̃)Γ(n2 − α̃)Γ(1 + β̃)

Γ(n1 + n2 + 1 + β̃ − 2α̃)
. (47)

If the single distribution is given by a Beta distribution

There is a unique solution in terms of the Dirichlet distribution for the double parton density:

With powers of the dPDF being related to the powers of sPDF

9

The combination of Γ functions in the above equation is a multinomial beta function

B(a1, a2, a3) ≡
Γ(a1)Γ(a2)Γ(a3)

Γ(a1 + a2 + a3)
. (48)

Now let us inspect the momentum sum rule in the Mellin space for the single channel case, which read

D̃(n1, 2) = D̃(n1)− D̃(n1 + 1) , (49)

and likewise

D̃(2, n2) = D̃(n2)− D̃(n2 + 1) . (50)

We take the Mellin transform of the double parton distribution (47) and set n2 = 2

D̃(n1, 2) = N2
Γ(n1 − α̃)Γ(2− α̃)Γ(1 + β̃)

Γ(n1 + 3 + β̃ − 2α̃)
. (51)

This gives the left hand side of Eq.49. The right hand side of the same sum rule (49) in terms of moments of single
parton distribution is

D̃(n1)− D̃(n1 + 1) =
1

B(2 − α,β + 1)

(

B(n1 − α,β + 1)−B(n1 + 1− α,β + 1)
)

=
B(n1 − α,β + 2)

B(2 − α,β + 1)

=
1

B(2 − α,β + 1)

Γ(n1 − α)Γ(2 + β)

Γ(2 + β + n1 − α)
, (52)

where we have used the following property of the Beta function

B(a, b) = B(a+ 1, b) +B(a, b+ 1) . (53)

For the momentum sum rule to be satisfied we need expression in (51) to be equal to (52). We can see that we can
do this by simultaneously requiring

α̃ = α, β̃ = β + α− 1 , (54)

and setting the normalization constant (which does not depend on n1) equal to

N2 =
1

B(2 − α,α+ β)B(2 − α,β + 1)
=

1

B(2− α, β̃ + 1)B(2− α,β + 1)
. (55)

The first observation is that the powers which govern the small x behaviour stay the same in the single and double
parton distribution, which is reflected by the fact that α̃ = α. This is physically understandable, since we expect that
momentum correlation will not affect partons with very small x. The second comment is that the powers β and β̃
differ by α, i.e. the growth of partons at small x actually is correlated with the power at large x. The third comment
is that the results are obviously symmetric with respect to the change of n1 and n2 which is required physically and
which is satisfied by this example because of the property of the Beta function (53).

A. Generalization: expansion in terms of Dirichlet distributions

Now let us generalize this case by assuming that we can expand the single parton distribution in the series of beta
distributions with different power coefficients αk,βk and weights ak. That is, in the momentum space we would have

D(x) = N1

K
∑

k=1

akx
−αk (1− x)βk , (56)

and without the loss of generality we can set a1 = 1. In principle there is no constraint on the value of K, the above
sum could contain an infinite number of terms. Later on for practical purposes we shall consider a finite value for K.

Normalization for dPDF in this particular case is uniquely determined.

Small x powers for single and double PDFs are the same. 

The large x power of the correlating factor in dPDF is related to the sum of 
large and small x powers of the single distribution.
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Initial conditions: expansion
Realistic parametrizations are however more complicated than a single Beta distribution.

Example MSTW2008 gluon PDF:

Chapter 4. Solutions for Double Parton Distributions 32

N

f

= 0,

C

a

= 3,

T

R

= 1/2, (4.2.4)

b =

33� 2N

f

12⇡

.

We now assume that the single parton distribution function for gluons has the form obtained from
the leading order fits given by [18].

xD

g

1

�
x,Q

2
�
= N1x

��g
(1� x)

⌘g
�
1 + ✏

g

p
x+ �

g

x

�
, (4.2.5)

�

g

= 0.83657, (4.2.6)
⌘

g

= 2.3882, (4.2.7)
✏

g

= �38.997, (4.2.8)
�

g

= 1445.5, (4.2.9)

N1 =

Z 1

0

dx x

��g
(1� x)

⌘g
�
1 + ✏

g

p
x+ �

g

x

���1

⇡ 0.00337. (4.2.10)

We note that in the MSTW 2008 fits presented in [18] the normalization is different. Here we
normalize the distribution such that the momentum sum rule is satisfied. Similarly, ˜

D2(n1, n2, t =

0) is also a specified initial condition. In momentum space it is given by the ansatz given in
Eq. (3.2.5). To be precise and more easily make use of our previously developed formalism, we
take the ansatz for the initial condition of the single distribution to be of the form:

D

g

1(x) = N1

⇥
a1x

�↵1
(1� x)

�1
+ a2x

�↵2
(1� x)

�2
+ a3x

�↵3
(1� x)

�3
⇤
, (4.2.11)

where the parameters are given by

a1 = 1, a2 = ✏

g

, a3 = �

g

, (4.2.12)
↵1 = �

g

+ 1, ↵2 = �

g

+ 1/2, ↵3 = �

g

, (4.2.13)
�1 = �2 = �3 = ⌘

g

. (4.2.14)

According to the formalism described in Chapter 3, we take the double parton distribution to be of
the form

D

gg

2

�
x1, x2, Q

2
0

�
= N2

h
c1 x

�↵̃1
1 x

�↵̃1
2 (1� x1 � x2)

�̃1

+ c2 x
�↵̃2
1 x

�↵̃2
2 (1� x1 � x2)

�̃2
+ c3 x

�↵̃3
1 x

�↵̃3
2 (1� x1 � x2)

�̃3

i
. (4.2.15)

However, this parametrization is sum of Beta distributions of the form:

D(x) = N1

KX

k=1

akx
�↵k (1� x)�k

Assuming that the dPDF is the sum of Dirichlet distributions:

D(x1, x2) = N2

KX

k=1

ckx
�↵̃k
1 x

�↵̃k
2 (1� x1 � x2)

�̃k

Performing the same analysis as before (for single channel) one obtains the conditions for each k:

↵̃k = ↵k �̃k = �k � 1 + ↵k

ck = ak
B(↵1 + �1, 2� ↵1)

B(�k + ↵k, 2� ↵k)
N2 = N1

1

B(↵1 + �1, 2� ↵1)

The normalizations:
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Initial conditions for dPDFs 

Chapter 4. Solutions for Double Parton Distributions 33

Also, due to the formalism given in Chapter 3, the parameters must obey the resulting conditions:

↵̃

k

= ↵

k

,

˜

�

k

= �

k

� 1 + ↵

k

. (4.2.16)

Furthermore, we also have the conditions on the coefficients c
k

and N2:

N2 = N1
1

B(↵1 + �1, 2� ↵1)
, (4.2.17)

c

k

= a

k

B(↵1 + �1, 2� ↵1)

B(�

k

+ ↵

k

, 2� ↵

k

)

, (4.2.18)

with c1 = a1 = 1.

Using the initial distribution given by Eq. (4.2.11) and the parameters given above we see below
in Figure 4.1 the form of our single parton distribution function at the initial scale Q2

0. For all plots
shown, parton indices are omitted.

10-5 10-4 0.001 0.01 0.1 1
0

5

10

15

x

x
D
1Ix,

Q
2 M

SingleParton Distribution Function
Q2=1. GeV2

Figure 4.1. Single parton distribution, Eq. (4.2.11), given at the initial scale Q

2
0.

Similarly, using the initial distribution given by Eq. (4.2.15) and the parameters above, we see
below in Figure 4.2 the form of the double parton distribution function given at the initial scale,
Q

2
0 and x2 = 10

�2.
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10-5 10-4 0.001 0.01 0.1 1
0

50

100

150

x1

x 1
x 2
D
2Ix 1

,x
2,
Q
2 M

Double Parton Distribution Function at Inital Scale
x2=1.¥10-2,Q2=1. GeV2

Figure 4.2. The double parton distribution function, Eq. (4.2.15), given at the initial scale Q

2
0 and x2 =

10�2.

In the Mellin moment space, our ansatz for the single distribution is given by Eq. (3.2.15) and
our ansatz for the double distribution is given by Eq. (3.2.18). Using these initial conditions in
Eq. (4.1.18) we then have the evolved double parton distribution function at an arbitrary scale, Q2.

We can numerically invert the analytic solutions obtained in Eq. (4.1.19) and Eq. (4.1.18); in
particular we have that

D

g

1

�
x,Q

2
�
=

Z

C

dn

2⇡i

x

�n

˜

D

g

1

�
n1, Q

2
�
, (4.2.19)

D

gg

2

�
x1, x2, Q

2
�
=

Z

C1

dn1

2⇡i

Z

C2

dn2

2⇡i

x

�n1
1 x

�n2
2

˜

D

gg

2

�
n1, n2, Q

2
�
. (4.2.20)

where the contour C is taken to the right of all poles present in ˜

D

g

1 (n1, Q
2
) and the contours C1

and C2 are such that they lie to the right of all poles present in ˜

D

gg

2 (n1, n2, Q
2
).

Using Eq. (4.1.19) and numerically performing the integral in Eq. (4.2.19) we have the form of the
single parton distribution function evolved up to scales Q2

= 25 GeV2 and Q

2
= 100 GeV2, seen

below in Figure 4.3.

• Use this algorithm, expansion in terms of Beta and Dirichlet distributions, to construct dPDF 
from MSTW2008 gluon. 

• Single channel (gluons) only. 

• Using different normalization for the LO MSTW2008 gluon.
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Initial conditions for dPDFs: ratios

Chapter 4. Solutions for Double Parton Distributions 37

This quantity can be seen below at the initial scale, Q2
0, with x2 = 10

�2 in Figure 4.5.

10-5 10-4 0.001 0.01 0.1 1
0

1

2

3

4

5

x1

RIx 1
,x

2,
Q
2 M

Ratio of Double Parton Distribution to Product
of SingleParton Distributions
x2=1.¥10-2,Q2=1. GeV2

Figure 4.5. The ratio of double parton distribution function to the product of single parton distribution
functions at the initial scale Q

2
0 = 1 GeV2 and x2 = 10�2.

We see that at this scale, this ratio is not at all near unity. Hence, one cannot factorize a double
parton distribution function into a product of single parton distribution functions. In Figure 4.6
below, we see the ratio of the evolved parton distribution functions at scales Q

2
= 25 GeV2 and

Q

2
= 100 GeV2 with x2 = 10

�2.
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Figure 4.4. Double parton distribution function evolved to two different scales, Q2 = 25 GeV2 and Q

2 =
100 GeV2, with x2 = 10�2.

It should be noted that after the evolution up to some scale Q

2 that the momentum sum rule given
by Eq. (2.2.8) is exactly satisfied by the parton distributions shown above.

Finally, in an effort to determine how well double parton distribution functions factorize, that is,
how good of an approximation it is to say that Dgg

2 (x1, x2, Q
2
) = D

g

1 (x1, Q
2
)D

g

1 (x2, Q
2
), we plot

the following quantity:

R

gg

�
x1, x2, Q

2
�
=

D

gg

2 (x1, x2, Q
2
)

D

g

1 (x1, Q
2
)D

g

1 (x2, Q
2
)

. (4.2.21)

Ratio of double distribution to product of single distributions:

• Measure of the correlations at the initial scale.

• For this parametrization the correlations are 
very significant.

• Ratio different from unity over wide range of x.

• Factorization of powers at small x but different 
normalization.

• In principle can extend to quarks, requires 
some constraints put onto the form of the 
single PDFs.
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Evolution of single and double PDFs
Evolve the  dPDFs and sPDFs using DGLAP equations; 

D

f
1 (x,Q0) ! D

f
1 (x,Q)

D

f1f2
2 (x1, x2, Q0) ! D

f1f2
2 (x1, x2, Q)

Solution found in the Mellin space and then numerically inverted to the momentum space.

Correlation washed out by evolution except for large x.

Chapter 4. Solutions for Double Parton Distributions 39

because the momentum fraction x2 is much larger, therefore we expect there to be correlation
between the two partons, and hence factorization not to be a good approximation. In Figure 4.8
below, we see the ratio of the evolved parton distribution functions at scales Q

2
= 25 GeV2 and

Q

2
= 100 GeV2.
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Figure 4.8. The ratio of double parton distribution function to a product of single parton distributions
functions at two different scales, Q2 = 25 GeV2 and Q

2 = 100 GeV2, with x2 = .3.

It is observed that the factorization of the double parton distribution function into a product of
single parton distribution functions holds at small values of the momentum fraction x. This is
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because the momentum fraction x2 is much larger, therefore we expect there to be correlation
between the two partons, and hence factorization not to be a good approximation. In Figure 4.8
below, we see the ratio of the evolved parton distribution functions at scales Q

2
= 25 GeV2 and

Q

2
= 100 GeV2.
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Figure 4.8. The ratio of double parton distribution function to a product of single parton distributions
functions at two different scales, Q2 = 25 GeV2 and Q

2 = 100 GeV2, with x2 = .3.

It is observed that the factorization of the double parton distribution function into a product of
single parton distribution functions holds at small values of the momentum fraction x. This is
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Unintegrated DPDFs
What about the transverse momentum dependence of the DPDFs?

Possible formulation:
Small x Color Glass Condensate formalism: higher Wilson line correlators

Can one formulate something more practical?

• Kimber - Martin - Ryskin approach to the unintegrated parton densities.

• Includes transverse momentum dependence in the parton densities.

• Practical approach for the phenomenology, using integrated densities, convoluted with the 
Sudakov form factors

• consistent formulation within the small x framework
• evolution equations in principle are available (up to NLLx)

equations are rather complicated to solve for higher point correlators

Advantages:

Disadvantages:

16

Relation to  TMD (see next talk by Daniel Boer)
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Unintegrated PDFs

2

soft gluons. This construction is relatively convenient as it allows for obtaining the UPDFs without actually solving
separate equations (like the CCFM equation which is quite complicated) but rather using the standard PDFs.

In this letter, we extend the construction [55, 57] to the case of the unintegrated double parton distribution functions
(UDPDFs). Starting from the evolution equations for the integrated double distribution functions (DPDFs) we recast
them in the form that allows to extract the unintegrated versions of these distributions. We show that for the
homogeneous part of the solution to these equations, the extension requires the convolution of the integrated DPDFs
with splitting functions and multiplication by the appropriate Sudakov form factors. Since there are two hard scales
in this case, we find that the form of the UDPDFs depends on the relation between the two hard scales. Also, we find
that the cuto↵s which regularize the real emission integrals and the Sudakov form factors induce nontrivial correlations
between the longitudinal momenta of the two partons. We also discuss the theoretical status of the non-homogenous
contribution to the UDPDFs which corresponds to the splitting of one parton into two daughter partons with large
transverse momenta.

Our paper is organized as follows. In Sec. II we recapitulate the construction of the UPDFs presented in [55, 57]
in both the Mellin space and the x-space. In Sec. III we recall the evolution equations for the integrated DPDFs
and also show their formulation in the Mellin space. In Sec. IV we present the main results of this paper, namely
the details of the construction of the UDPDFs for the homogeneous part of the double parton distributions. We
also briefly discuss the correlations between kinematic variables in the UDPDFs, induced by the regularization of the
real emission integrals and the Sudakov form factors. In Sec. V we apply the construction from the previous section
to the non-homogeneous part of the double parton distributions to obtain the non-homogeneous contribution to the
UDPDFs. Finally, in the last section we present the summary and conclusions.

II. UNINTEGRATED PARTON DISTRIBUTIONS

Let us first recapitulate the main points of the construction of the single unintegrated parton distribution functions

proposed in [55, 57]. The starting point are the DGLAP evolution equations for the single integrated parton distri-
butions D

a

(x, µ), where a denotes quark/antiquark flavors and also gluon, x is the longitudinal momentum fraction
and µ is the scale for this distribution. The DGLAP equations with real and virtual parts separated read

@D

a

(x, µ)

@ lnµ2
=

X

a

0

Z 1��

x

dz

z

P

aa

0(z, µ)D
a

0

⇣
x

z

, µ

⌘
�D

a

(x, µ)
X

a

0

Z 1��

0
dzzP

a

0
a

(z, µ) . (1)

The splitting functions P
aa

0 can be computed order by order in perturbation theory and thus are given in powers of
the running strong coupling constant, ↵

s

(µ)/(2⇡). In the leading logarithmic in µ

2 approximation we have

P

aa

0(z, µ) =
↵

s

(µ)

2⇡
P

(0)
aa

0 (z) , (2)

where P

(0)
aa

0 are the LO Altarelli-Parisi splitting functions. The upper limits in the divergent integrals in Eq. (1) were
regularized by a parameter � < 1 to be specified later. In the DGLAP equations � ! 0 because singularities between
real and virtual terms cancel, but we will keep � finite to be able to manipulate these equations. The first (real)
term in Eq. (1) can be interpreted as a number of partons which are emitted in the interval µ2  k

2
?  µ

2 + �µ

2. The
second (virtual) term does not change the transverse momentum of the parton and therefore can be integrated as we
shall show below.

Let us take for the factorization scale parton transverse momentum, µ = |k?| ⌘ k? and rewrite these equations in
the following form

@D

a

(x, k?)

@ ln k2?
+D

a

(x, k?)
X

a

0

Z 1��

0
dzz P

a

0
a

(z, k?) =
X

a

0

Z 1��

x

dz

z

P

aa

0(z, k?)Da

0

⇣
x

z

, k?

⌘
. (3)

After multiplying both sides by the Sudakov form factor1,

T

a

(Q, k?) = exp

(
�
Z

Q

2

k

2
?

dp

2
?

p

2
?

X

a

0

Z 1��

0
dzzP

a

0
a

(z, p?)

)
, (4)

1 Due to relations between the LO splitting functions, one power of z under the integral can be removed at the price of introducing an
overall factor 1/2 in the argument of the exponent.
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DGLAP evolution for single PDF

real virtual

3

D(k?)

T (k?, µ)

FIG. 1: Schematic representation of the UPDFs, Eq. (8). The longitudinal momentum structure is suppressed on this plot.
The horizontal line denotes the real parton emission with the splitting functions Pab and the circular blobs on the vertical lines
indicate the Sudakov form factor.

where k

2
?  Q

2, the lhs can be written as a full derivative, and Eq. (3) reads

@

@ ln k2?
[T

a

(Q, k?)Da

(x, k?)] = T

a

(Q, k?)
X

a

0

Z 1��

x

dz

z

P

aa

0(z, k?)Da

0

⇣
x

z

, k?

⌘
. (5)

The Sudakov form factor is interpreted as the probability that the parton a with transverse momentum k? will not
split into a pair of partons during the evolution in p

2
? up to the scale Q

2. Integrating both sides of Eq. (5) over k?
in the limits Q0  Q, where Q0 is an initial scale for the DGLAP evolution, we find on the lhs

Z
Q

2

Q

2
0

dk

2
?

k

2
?

@

@ ln k2?
[T

a

(Q, k?)Da

(x, k?)] = D

a

(x,Q)� T

a

(Q,Q0)Da

(x,Q0) , (6)

since T

a

(Q,Q) = 1. Thus, Eq. (5) takes the following form

D

a

(x,Q) = T

a

(Q,Q0, )Da

(x,Q0) +

Z
Q

2

Q

2
0

dk

2
?

k

2
?

f

a

(x, k?, Q) , (7)

where we introduced the unintegrated parton distribution functions (UPDFs), defined for each flavor a,

f

a

(x, k?, Q) ⌘ T

a

(Q, k?)
X

a

0

Z 1��

x

dz

z

P

aa

0(z, k?)Da

0

⇣
x

z

, k?

⌘
. (8)

The transverse momentum structure of the above equation is illustrated in Fig. 1. Notice that the UPDFs can also
be written as a derivative

f

a

(x, k?, Q) =
@

@ ln k2?
[T

a

(Q, k?)Da

(x, k?)] . (9)

The first term on the rhs of Eq. (7) corresponds to absence of splitting during the evolution from Q0 to Q while
the second one describes a sequence of partonic emissions interlaced with the probabilities for no emissions. This
constitutes the Monte Carlo scheme for generation of parton cascades.

The UPDFs in the presented scheme are defined for the transverse momenta in the range Q0  k?  Q. The
region below Q0 merges into the non-perturbative domain where parton saturation e↵ects could become important,
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The Sudakov form factor is interpreted as the probability that the parton a with transverse momentum k? will not
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The transverse momentum structure of the above equation is illustrated in Fig. 1. Notice that the UPDFs can also
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the second one describes a sequence of partonic emissions interlaced with the probabilities for no emissions. This
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The UPDFs in the presented scheme are defined for the transverse momenta in the range Q0  k?  Q. The
region below Q0 merges into the non-perturbative domain where parton saturation e↵ects could become important,
especially for small values of x ⌧ 1. Thus, this region needs special attention in phenomenological approaches to
the description of physical processes, see e.g. [58]. However, the discussion of such e↵ects is beyond the scope of the
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In order to fully fix the UPDFs, the cuto↵ parameter � in Eqs. (4) and (8) needs to be specified. In Ref. [55] the
cuto↵ parameter was set to
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or

after integrating out the virtual part

with Sudakov 
formfactor

2

soft gluons. This construction is relatively convenient as it allows for obtaining the UPDFs without actually solving
separate equations (like the CCFM equation which is quite complicated) but rather using the standard PDFs.

In this letter, we extend the construction [55, 57] to the case of the unintegrated double parton distribution functions
(UDPDFs). Starting from the evolution equations for the integrated double distribution functions (DPDFs) we recast
them in the form that allows to extract the unintegrated versions of these distributions. We show that for the
homogeneous part of the solution to these equations, the extension requires the convolution of the integrated DPDFs
with splitting functions and multiplication by the appropriate Sudakov form factors. Since there are two hard scales
in this case, we find that the form of the UDPDFs depends on the relation between the two hard scales. Also, we find
that the cuto↵s which regularize the real emission integrals and the Sudakov form factors induce nontrivial correlations
between the longitudinal momenta of the two partons. We also discuss the theoretical status of the non-homogenous
contribution to the UDPDFs which corresponds to the splitting of one parton into two daughter partons with large
transverse momenta.

Our paper is organized as follows. In Sec. II we recapitulate the construction of the UPDFs presented in [55, 57]
in both the Mellin space and the x-space. In Sec. III we recall the evolution equations for the integrated DPDFs
and also show their formulation in the Mellin space. In Sec. IV we present the main results of this paper, namely
the details of the construction of the UDPDFs for the homogeneous part of the double parton distributions. We
also briefly discuss the correlations between kinematic variables in the UDPDFs, induced by the regularization of the
real emission integrals and the Sudakov form factors. In Sec. V we apply the construction from the previous section
to the non-homogeneous part of the double parton distributions to obtain the non-homogeneous contribution to the
UDPDFs. Finally, in the last section we present the summary and conclusions.

II. UNINTEGRATED PARTON DISTRIBUTIONS

Let us first recapitulate the main points of the construction of the single unintegrated parton distribution functions

proposed in [55, 57]. The starting point are the DGLAP evolution equations for the single integrated parton distri-
butions D
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(x, µ), where a denotes quark/antiquark flavors and also gluon, x is the longitudinal momentum fraction
and µ is the scale for this distribution. The DGLAP equations with real and virtual parts separated read
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The splitting functions P
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0 can be computed order by order in perturbation theory and thus are given in powers of
the running strong coupling constant, ↵
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where P
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0 are the LO Altarelli-Parisi splitting functions. The upper limits in the divergent integrals in Eq. (1) were
regularized by a parameter � < 1 to be specified later. In the DGLAP equations � ! 0 because singularities between
real and virtual terms cancel, but we will keep � finite to be able to manipulate these equations. The first (real)
term in Eq. (1) can be interpreted as a number of partons which are emitted in the interval µ2  k

2
?  µ

2 + �µ

2. The
second (virtual) term does not change the transverse momentum of the parton and therefore can be integrated as we
shall show below.

Let us take for the factorization scale parton transverse momentum, µ = |k?| ⌘ k? and rewrite these equations in
the following form
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After multiplying both sides by the Sudakov form factor1,
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1 Due to relations between the LO splitting functions, one power of z under the integral can be removed at the price of introducing an
overall factor 1/2 in the argument of the exponent.
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FIG. 1: Schematic representation of the UPDFs, Eq. (8). The longitudinal momentum structure is suppressed on this plot.
The horizontal line denotes the real parton emission with the splitting functions Pab and the circular blobs on the vertical lines
indicate the Sudakov form factor.
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The Sudakov form factor is interpreted as the probability that the parton a with transverse momentum k? will not
split into a pair of partons during the evolution in p

2
? up to the scale Q

2. Integrating both sides of Eq. (5) over k?
in the limits Q0  Q, where Q0 is an initial scale for the DGLAP evolution, we find on the lhs
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where we introduced the unintegrated parton distribution functions (UPDFs), defined for each flavor a,
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The transverse momentum structure of the above equation is illustrated in Fig. 1. Notice that the UPDFs can also
be written as a derivative
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The first term on the rhs of Eq. (7) corresponds to absence of splitting during the evolution from Q0 to Q while
the second one describes a sequence of partonic emissions interlaced with the probabilities for no emissions. This
constitutes the Monte Carlo scheme for generation of parton cascades.

The UPDFs in the presented scheme are defined for the transverse momenta in the range Q0  k?  Q. The
region below Q0 merges into the non-perturbative domain where parton saturation e↵ects could become important,
especially for small values of x ⌧ 1. Thus, this region needs special attention in phenomenological approaches to
the description of physical processes, see e.g. [58]. However, the discussion of such e↵ects is beyond the scope of the
present paper.

In order to fully fix the UPDFs, the cuto↵ parameter � in Eqs. (4) and (8) needs to be specified. In Ref. [55] the
cuto↵ parameter was set to
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indicate the Sudakov form factor.
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The first term on the rhs of Eq. (7) corresponds to absence of splitting during the evolution from Q0 to Q while
the second one describes a sequence of partonic emissions interlaced with the probabilities for no emissions. This
constitutes the Monte Carlo scheme for generation of parton cascades.

The UPDFs in the presented scheme are defined for the transverse momenta in the range Q0  k?  Q. The
region below Q0 merges into the non-perturbative domain where parton saturation e↵ects could become important,
especially for small values of x ⌧ 1. Thus, this region needs special attention in phenomenological approaches to
the description of physical processes, see e.g. [58]. However, the discussion of such e↵ects is beyond the scope of the
present paper.

In order to fully fix the UPDFs, the cuto↵ parameter � in Eqs. (4) and (8) needs to be specified. In Ref. [55] the
cuto↵ parameter was set to

� =
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CCFM angular ordering:

4

in the spirit of the DGLAP ordering of parton real emission in transverse momenta. Thus, from the upper integration
limit, x < (1��), the UPDFs are nonzero for the transverse momenta k? < Q(1� x).

The prescription was further modified in Ref. [56, 57] to account for the angular ordering in parton emissions in
accord with the CCFM evolution scheme [50–53],
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k? +Q

. (11)

In such a case, the nonzero values of the UDPFs are given for the transverse momenta k? < Q(1/x � 1). We see
that the upper cuto↵ now is bigger than in the DGLAP scheme. This is particularly important for small xvalues
since the upper cuto↵s obey the condition Q/x � Q. Thus, the transverse momenta region in the CCFM scheme is
much bigger that in the DGLAP scheme which allows for a smooth transition of transverse momenta into the region
k? > Q, see Ref. [56, 57].

A. Alternative derivation

this subsection we shall construct an alternative derivation of the unintegrated single parton density. The aim is to
prepare the ground and methods for the construction of the unintegrated double parton distributions. The solution
of the DGLAP equations (1) can be written in terms of the parton-to-parton evolution distributions E
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(x, µ0, µ),
which obey the following equation
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In the above we have regularized singularity of the splitting functions at z = 1 by introducing a small parameter ✏,
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(z) ⇠ 1/(1� z + ✏) for z ! 1. These distributions generate the evolution of the PDFs
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since the parton distributions obtained from this relation obey the standard DGLAP evolution equations. This can
be easily proven by using the Mellin transform
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Using the above definition, Eq. (12) reads
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Multiplying both sides of Eq. (16) by D̃
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(n, µ0) and summing over b, we obtain eq. (1) in the Mellin moment space
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To find the UPDFs, we set µ = k? in Eq. (16) and multiply both sides by the Sudakov form factor,
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Larger phase space for emissions, tail in transverse momentum extends to 

It is at this last step of the evolution that the unintegrated distribution becomes dependent on
the two scales, k2

t and µ2.

We now have to take care to specify the value of the infrared cut-off ∆, which is introduced
to protect the 1/(1−z) singularity in the splitting functions arising from soft gluon emission. In

the original DGLAP equation, (1), which describes the evolution of the integrated distributions,
this singularity is cancelled between the real emission and virtual contributions. However after
the resummation of the virtual terms, the real soft gluon emission must be accounted for

explicitly since it changes the kt of the parton. Thus we have to find the physically appropriate
choice of the cut-off ∆ to provide the angular ordering of the gluon emissions6.

In Ref. [6] the cut-off was taken to be ∆ = kt/µ. As a consequence the two-scale unintegrated
distributions fa(x, k2

t , µ
2) of [6] vanish for kt > µ, in accordance with the DGLAP strong

ordering in kt. However we can do better and impose the more correct angular ordering in the
last step of the evolution. It was shown in Refs. [1, 5] that this leads to a constraint on the

scale µ, namely
Θ(θ − θ′) ⇒ µ > zkt/(1 − z). (5)

Thus the maximum allowed value of the integration variable z is

zmax =
µ

µ + kt
(6)

and the corresponding cut-off ∆ = kt/(µ + kt). Of course the same ∆ must be used both in
the real emission integral in (4) and in the survival probability T in (3).7 In fact we shall see

that the imposition of angular ordering at the last step of the evolution leads to physically
reasonable parton kt distributions which extend smoothly into the domain kt > µ.

3 Inclusion of ln(1/x) effects

We wish to generalize the above method to include the leading ln(1/x) contributions. Clearly
there can be different forms of the ‘unified’ evolution equation summing up the leading DGLAP

and BFKL logarithms, where the ambiguity is at the subleading level. The aim is to find a
good prescription which is not too complicated, but which can account for all the physically
relevant kinematic effects just at LO level. In other words we seek an equation which sums up

the major part of the subleading corrections in a LO framework.

Let us consider, for the moment, just the gluon distribution. Recall that the unintegrated

distribution f(x, k2
t , µ

2) depends on two scales. As in the pure DGLAP case of Section 2 we wish
to work in terms of a single-scale evolution equation, and then to restore the scale µ, and the

full kinematics, at the last step of the evolution. This is illustrated schematically in Figure 1.
6Although the splitting functions Pgq and Pqg are not singular at z = 1 it is natural to use the same

prescription for both the quark and the gluon distributions.
7In equation (3), ∆ = k′

t/(µ + k′

t) is the appropriate cut-off for z′.
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3 Inclusion of ln(1/x) effects

We wish to generalize the above method to include the leading ln(1/x) contributions. Clearly
there can be different forms of the ‘unified’ evolution equation summing up the leading DGLAP

and BFKL logarithms, where the ambiguity is at the subleading level. The aim is to find a
good prescription which is not too complicated, but which can account for all the physically
relevant kinematic effects just at LO level. In other words we seek an equation which sums up

the major part of the subleading corrections in a LO framework.

Let us consider, for the moment, just the gluon distribution. Recall that the unintegrated

distribution f(x, k2
t , µ

2) depends on two scales. As in the pure DGLAP case of Section 2 we wish
to work in terms of a single-scale evolution equation, and then to restore the scale µ, and the

full kinematics, at the last step of the evolution. This is illustrated schematically in Figure 1.
6Although the splitting functions Pgq and Pqg are not singular at z = 1 it is natural to use the same

prescription for both the quark and the gluon distributions.
7In equation (3), ∆ = k′

t/(µ + k′

t) is the appropriate cut-off for z′.
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Extending the KMR framework to DPDFs
Use parton-to-parton evolution function:

4

in the spirit of the DGLAP ordering of parton real emission in transverse momenta. Thus, from the upper integration
limit, x < (1��), the UPDFs are nonzero for the transverse momenta k? < Q(1� x).

The prescription was further modified in Ref. [56, 57] to account for the angular ordering in parton emissions in
accord with the CCFM evolution scheme [50–53],

� =
k?

k? +Q

. (11)

In such a case, the nonzero values of the UDPFs are given for the transverse momenta k? < Q(1/x � 1). We see
that the upper cuto↵ now is bigger than in the DGLAP scheme. This is particularly important for small xvalues
since the upper cuto↵s obey the condition Q/x � Q. Thus, the transverse momenta region in the CCFM scheme is
much bigger that in the DGLAP scheme which allows for a smooth transition of transverse momenta into the region
k? > Q, see Ref. [56, 57].

A. Alternative derivation

this subsection we shall construct an alternative derivation of the unintegrated single parton density. The aim is to
prepare the ground and methods for the construction of the unintegrated double parton distributions. The solution
of the DGLAP equations (1) can be written in terms of the parton-to-parton evolution distributions E

ab

(x, µ0, µ),
which obey the following equation
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In the above we have regularized singularity of the splitting functions at z = 1 by introducing a small parameter ✏,

e.g. P (0)
qq

(z) ⇠ 1/(1� z + ✏) for z ! 1. These distributions generate the evolution of the PDFs
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since the parton distributions obtained from this relation obey the standard DGLAP evolution equations. This can
be easily proven by using the Mellin transform

Ã(n) =
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0
dx x

n

A(x) . (15)

Using the above definition, Eq. (12) reads
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with the initial condition Ẽ
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, while Eq. (14) is given by
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Multiplying both sides of Eq. (16) by D̃

b

(n, µ0) and summing over b, we obtain eq. (1) in the Mellin moment space
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To find the UPDFs, we set µ = k? in Eq. (16) and multiply both sides by the Sudakov form factor,
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(n is Mellin variable conjugated to x)
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Ẽ

ab

(n, µ, µ0) =
X

a

0

P̃

aa

0(n, µ) Ẽ
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Ẽ

ab

(n, µ, µ0) D̃b

(n, µ0). (17)

Multiplying both sides of Eq. (16) by D̃

b

(n, µ0) and summing over b, we obtain eq. (1) in the Mellin moment space

@

@ lnµ2
D̃

a

(n, µ) =
X

a

0

P̃

aa

0(n, µ) D̃
a

0(n, µ)� D̃

a

(n, µ)
X

a

0

Z 1

0
dzzP

a

0
a

(z, µ) . (18)

To find the UPDFs, we set µ = k? in Eq. (16) and multiply both sides by the Sudakov form factor,

T

a

(Q, k?) = exp

⇢
�
Z

Q

2

k

2
?

dp

2
?

p

2
?

X

a

0

Z 1

0
dzzP

a

0
a

(z, k?)

�
, (19)

4

in the spirit of the DGLAP ordering of parton real emission in transverse momenta. Thus, from the upper integration
limit, x < (1��), the UPDFs are nonzero for the transverse momenta k? < Q(1� x).

The prescription was further modified in Ref. [56, 57] to account for the angular ordering in parton emissions in
accord with the CCFM evolution scheme [50–53],

� =
k?

k? +Q

. (11)

In such a case, the nonzero values of the UDPFs are given for the transverse momenta k? < Q(1/x � 1). We see
that the upper cuto↵ now is bigger than in the DGLAP scheme. This is particularly important for small xvalues
since the upper cuto↵s obey the condition Q/x � Q. Thus, the transverse momenta region in the CCFM scheme is
much bigger that in the DGLAP scheme which allows for a smooth transition of transverse momenta into the region
k? > Q, see Ref. [56, 57].

A. Alternative derivation

this subsection we shall construct an alternative derivation of the unintegrated single parton density. The aim is to
prepare the ground and methods for the construction of the unintegrated double parton distributions. The solution
of the DGLAP equations (1) can be written in terms of the parton-to-parton evolution distributions E

ab

(x, µ0, µ),
which obey the following equation

@

@ lnµ2
E

ab

(x, µ, µ0) =
X

a

0

Z 1

x

dz

z

P

aa

0(z, µ)E
a

0
b

⇣
x

z

, µ, µ0

⌘
� E

ab

(x, µ, µ0)
X

a

0

Z 1

0
dzzP

a

0
a

(z, µ) (12)

with the initial condition

E

ab

(x, µ0, µ0) = �

ab

�(1� x) . (13)

In the above we have regularized singularity of the splitting functions at z = 1 by introducing a small parameter ✏,

e.g. P (0)
qq

(z) ⇠ 1/(1� z + ✏) for z ! 1. These distributions generate the evolution of the PDFs

D

a

(x, µ) =
X

b

Z 1

x

dz

z

E

ab

⇣
x

z

, µ, µ0

⌘
D

b

(z, µ0) , (14)

since the parton distributions obtained from this relation obey the standard DGLAP evolution equations. This can
be easily proven by using the Mellin transform
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initial condition

5

to obtain
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Integrating both sides of this equation over k? from µ0 ⌘ Q0 to Q, we find
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and using Eq. (17), we obtain
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The expression under the integral in the above equation is the unintegrated parton distribution in the Mellin moment
space. Transforming it into the x space, we find the following equation
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which is equivalent to Eq. (8) after switching from the ✏ regularization of the splitting functions to the reularization
with (1��) in the upper integration limit, both in the above equation and in the Sudakov form factor (19).

III. DOUBLE PARTON DISTRIBUTIONS

We start this section from recalling the evolution equations for the integrated double parton distribution functions,
D

a1a2(x2, x2, µ1, µ2), following results of Ref. [21] appended by virtual corrections2. The evolution of the DPDFs can
be cast in the following form
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where µ

2
min

= min{µ2
1, µ

2
2}, and the distributions E

ab

obey the evolution equation (12). The integration limits take
into account kinematic constraints x1, x2 > 0 and x1 + x2  1.

The first, homogenous, term on the rhs of Eq. (24), is proportional to the double parton density and corresponds
to the independent evolution of two partons from the initial scale µ0 to µ1 and from µ0 to µ2. The second, non-
homogeneous, term contains the distribution
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which describes the splitting of the parton a ! a

0
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00. Notice the single PDFs at the splitting scale µ

s

, D
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the real emission LO splitting functions (2), P
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(z). In the LO, the second parton flavor a00 is uniquely
determined from the splitting a ! a

0.
The presented results can also be written in the Mellin moment space introducing the double Mellin transform
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2 The DPDFs also depend on the transverse momentum vector r, which we set to zero. For r = 0, the DPDFs in the lowest order
approximation are probabilities to find two partons with longitudinal momentum fractions x1,2, see [27] for more details.

Formally integrating out virtual part:

It evolves sPDF to scale       from scale   µ0µ

Double parton distributions (DGLAP eq):
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Then Eq. (24) reads
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In the above formula the scales µ1 and µ2 are not necessary equal. In the case of equal scales, µ1 = µ1 ⌘ µ, Eq. (27)
is a solution to the following di↵erential equation
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where we keep only the common scale µ in the notation, see Appendix A for the proof. The above equations are the
well known evolution equations [17, 18, 23] in the Mellin moment space.

IV. UNINTEGRATED DOUBLE PARTON DISTRIBUTIONS

In this section we shall define the unintegrated double parton distribution functions by essentially generalizing
the procedure introduced in [55, 57] for the single PDFs, reviewed in Sec. II. In what follows, we shall discuss the
homogeneous and non-homogeneous parts separately as their treatment in the presence of the transverse momentum
dependence is rather di↵erent.

A. Homogeneous part in the Mellin space

Let us first concentrate on the homogeneous part of Eq. (27),
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where we set the final scales µ1 = Q1 and µ2 = Q2 and the initial scale µ0 = Q0. Substituting the distributions (21)
into Eq. (30), we find
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00(n2, µ2, µ0) D̃a

0
a

00(n1, n2, µ0, µ0)

+

Z
µ

2
min

µ

2
0

dµ

2
s

µ

2
s

Ẽ
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(n1, n2, Q1, Q2) =
X

a

0
,a

00

Ẽ

a1a
0(n1, Q1, Q0) Ẽa2a

00(n2, Q2, Q0) D̃a

0
a

00(n1, n2, Q0, Q0) , (30)

where we set the final scales µ1 = Q1 and µ2 = Q2 and the initial scale µ0 = Q0. Substituting the distributions (21)
into Eq. (30), we find

D̃

(h)
a1a2

(n1, n2, Q1, Q2) =
X

a

0
,a

00

⇢
T

a1(Q1, Q0) �a1a
0 +

Z
Q

2
1

Q

2
0

dk

2
1?

k

2
1?

T

a1(Q1, k1?)
X

b

P̃

a1b(n1, k1?) Ẽba

0(n1, k1?, Q0)

�

⇥
⇢
T

a2(Q2, Q0) �a2a
00 +

Z
Q

2
2

Q

2
0

dk

2
2?

k

2
2?

T

a2(Q2, k2?)
X

b

P̃

a2b(n2, k2?) Ẽba

00(n2, k2?, Q0)

�
D̃

a

0
a

00(n1, n2, Q0, Q0) . (31)

homogenous term

inhomogenous term
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Eqs. (33)-(35) or (37)-(40). The longitudinal momentum structure is suppressed on these plots. The horizontal lines correspond
to the real parton emission with the splitting functions and the circular blobs on the vertical lines indicate Sudakov form factors.

Multiplying term by term we obtain

D̃

(h)
a1a2

(n1, n2, Q1, Q2) = T

a1(Q1, Q0)Ta2(Q2, Q0) D̃a1a2(n1, n2, Q0, Q0)

+

Z
Q

2
2

Q

2
0

dk

2
2?

k

2
2?

⇢
T

a1(Q1, Q0)Ta2(Q2, k2?)
X

b

P̃

a2b(n2, k2?)
hX

a

00

Ẽ

ba

00(n2, k2?, Q0)D̃a1a
00(n1, n2, Q0, Q0)

i�

+

Z
Q

2
1

Q

2
0

dk

2
1?

k

2
1?

⇢
T

a1(Q1, k1?)Ta2(Q2, Q0)
X

b

P̃

a1b(n1, k1?)
hX

a

0

Ẽ

ba

0(n1, k1?, Q0)D̃a

0
a2(n1, n2, Q0, Q0)

i�

+

Z
Q

2
1

Q

2
0

dk

2
1?

k

2
1?

Z
Q

2
2

Q

2
0

dk

2
2?

k

2
2?

⇢
T

a1(Q1, k1?)Ta2(Q2, k2?)

⇥
X

b,c

P̃

a1b(n1, k1?) P̃a2c(n2, k2?)
h X

a

0
,a

00

Ẽ

ba

0(n1, k1?, Q0)Ẽca

00(n2, k2?, Q0)D̃a

0
a

00(n1, n2, Q0, Q0)
i�

. (32)

The first term in the sum on the rhs of the above equation corresponds to the evolution of the two partons from the
initial scale Q0 to the hard scales, Q1 and Q2, without real parton emissions. The two Sudakov form factors sum the
virtual corrections to such a process by integrating transverse momenta of the virtual partons up to the hard scales.
Thus, the two partons which enter the hard scattering retain their initial transverse momenta, k1,2? = Q0.

The expressions in the curly brackets under the integrals in Eq. (32) are the unintegrated double parton distribution

functions (UDPDFs), f̃ (h)
a1a2 , defined in three di↵erent regions of hard scales. Notice that the expressions in the square

brackets are the homogeneous DPDFs (30), taken at appropriate scales.
Thus, when Q

2
1 ⇠ Q

2
0 and Q

2
2 � Q

2
0, we find from the first integral

f̃

(h)
a1a2

(n1, n2, k1? = Q0, k2?, Q1, Q2) = T

a1(Q1, Q0)Ta2(Q2, k2?)
X

b

P̃

a2b(n2, k2?) D̃
(h)
a1b

(n1, n2, Q0, k2?) , (33)

Similarly, for Q2
1 � Q

2
0 and Q

2
2 ⇠ Q

2
0, we have from the the second integral

f̃

(h)
a1a2

(n1, n2, k1?, k2? = Q0, Q1, Q2) = T

a1(Q1, k1?)Ta2(Q2, Q0)
X

b

P̃

a1b(n1, k1?) D̃
(h)
ba2

(n1, n2, k1?, Q0) . (34)

Finally, for Q2
1,2 � Q

2
0, the third integral gives

f̃

(h)
a1a2

(n1, n2, k1?, k2?, Q1, Q2) = T

a1(Q1, k1?)Ta2(Q2, k2?)

⇥
X

b,c

P̃

a1b(n1, k1?) P̃a2c(n2, k2?) D̃
(h)
bc

(n1, n2, k1?, k2?) . (35)

The transverse momentum structure of the above expressions is illustrated in Fig. 2.
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Multiplying term by term we obtain

D̃

(h)
a1a2

(n1, n2, Q1, Q2) = T

a1(Q1, Q0)Ta2(Q2, Q0) D̃a1a2(n1, n2, Q0, Q0)

+

Z
Q

2
2

Q

2
0

dk

2
2?

k

2
2?

⇢
T

a1(Q1, Q0)Ta2(Q2, k2?)
X

b

P̃

a2b(n2, k2?)
hX

a

00

Ẽ

ba

00(n2, k2?, Q0)D̃a1a
00(n1, n2, Q0, Q0)

i�

+

Z
Q

2
1

Q

2
0

dk

2
1?

k

2
1?

⇢
T

a1(Q1, k1?)Ta2(Q2, Q0)
X

b

P̃

a1b(n1, k1?)
hX

a

0

Ẽ

ba

0(n1, k1?, Q0)D̃a

0
a2(n1, n2, Q0, Q0)

i�

+

Z
Q

2
1

Q

2
0

dk

2
1?

k

2
1?

Z
Q

2
2

Q

2
0

dk

2
2?

k

2
2?

⇢
T

a1(Q1, k1?)Ta2(Q2, k2?)

⇥
X

b,c

P̃

a1b(n1, k1?) P̃a2c(n2, k2?)
h X

a

0
,a

00

Ẽ

ba

0(n1, k1?, Q0)Ẽca

00(n2, k2?, Q0)D̃a

0
a

00(n1, n2, Q0, Q0)
i�

. (32)

The first term in the sum on the rhs of the above equation corresponds to the evolution of the two partons from the
initial scale Q0 to the hard scales, Q1 and Q2, without real parton emissions. The two Sudakov form factors sum the
virtual corrections to such a process by integrating transverse momenta of the virtual partons up to the hard scales.
Thus, the two partons which enter the hard scattering retain their initial transverse momenta, k1,2? = Q0.

The expressions in the curly brackets under the integrals in Eq. (32) are the unintegrated double parton distribution

functions (UDPDFs), f̃ (h)
a1a2 , defined in three di↵erent regions of hard scales. Notice that the expressions in the square

brackets are the homogeneous DPDFs (30), taken at appropriate scales.
Thus, when Q

2
1 ⇠ Q

2
0 and Q

2
2 � Q

2
0, we find from the first integral

f̃

(h)
a1a2

(n1, n2, k1? = Q0, k2?, Q1, Q2) = T

a1(Q1, Q0)Ta2(Q2, k2?)
X

b

P̃

a2b(n2, k2?) D̃
(h)
a1b

(n1, n2, Q0, k2?) , (33)

Similarly, for Q2
1 � Q

2
0 and Q

2
2 ⇠ Q

2
0, we have from the the second integral

f̃

(h)
a1a2

(n1, n2, k1?, k2? = Q0, Q1, Q2) = T

a1(Q1, k1?)Ta2(Q2, Q0)
X

b

P̃

a1b(n1, k1?) D̃
(h)
ba2

(n1, n2, k1?, Q0) . (34)

Finally, for Q2
1,2 � Q

2
0, the third integral gives

f̃

(h)
a1a2

(n1, n2, k1?, k2?, Q1, Q2) = T

a1(Q1, k1?)Ta2(Q2, k2?)

⇥
X

b,c

P̃

a1b(n1, k1?) P̃a2c(n2, k2?) D̃
(h)
bc

(n1, n2, k1?, k2?) . (35)

The transverse momentum structure of the above expressions is illustrated in Fig. 2.
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Multiplying term by term we obtain

D̃

(h)
a1a2

(n1, n2, Q1, Q2) = T

a1(Q1, Q0)Ta2(Q2, Q0) D̃a1a2(n1, n2, Q0, Q0)

+

Z
Q

2
2

Q

2
0

dk

2
2?

k

2
2?

⇢
T

a1(Q1, Q0)Ta2(Q2, k2?)
X

b

P̃

a2b(n2, k2?)
hX

a

00

Ẽ

ba

00(n2, k2?, Q0)D̃a1a
00(n1, n2, Q0, Q0)

i�

+

Z
Q

2
1

Q

2
0

dk

2
1?

k

2
1?

⇢
T

a1(Q1, k1?)Ta2(Q2, Q0)
X

b

P̃

a1b(n1, k1?)
hX

a

0

Ẽ

ba

0(n1, k1?, Q0)D̃a

0
a2(n1, n2, Q0, Q0)

i�

+

Z
Q

2
1

Q

2
0

dk

2
1?

k

2
1?

Z
Q

2
2

Q

2
0

dk

2
2?

k

2
2?

⇢
T

a1(Q1, k1?)Ta2(Q2, k2?)

⇥
X

b,c

P̃

a1b(n1, k1?) P̃a2c(n2, k2?)
h X

a

0
,a

00

Ẽ

ba

0(n1, k1?, Q0)Ẽca

00(n2, k2?, Q0)D̃a

0
a

00(n1, n2, Q0, Q0)
i�

. (32)

The first term in the sum on the rhs of the above equation corresponds to the evolution of the two partons from the
initial scale Q0 to the hard scales, Q1 and Q2, without real parton emissions. The two Sudakov form factors sum the
virtual corrections to such a process by integrating transverse momenta of the virtual partons up to the hard scales.
Thus, the two partons which enter the hard scattering retain their initial transverse momenta, k1,2? = Q0.

The expressions in the curly brackets under the integrals in Eq. (32) are the unintegrated double parton distribution

functions (UDPDFs), f̃ (h)
a1a2 , defined in three di↵erent regions of hard scales. Notice that the expressions in the square

brackets are the homogeneous DPDFs (30), taken at appropriate scales.
Thus, when Q

2
1 ⇠ Q

2
0 and Q

2
2 � Q

2
0, we find from the first integral

f̃

(h)
a1a2

(n1, n2, k1? = Q0, k2?, Q1, Q2) = T

a1(Q1, Q0)Ta2(Q2, k2?)
X

b

P̃

a2b(n2, k2?) D̃
(h)
a1b

(n1, n2, Q0, k2?) , (33)

Similarly, for Q2
1 � Q

2
0 and Q

2
2 ⇠ Q

2
0, we have from the the second integral

f̃

(h)
a1a2

(n1, n2, k1?, k2? = Q0, Q1, Q2) = T

a1(Q1, k1?)Ta2(Q2, Q0)
X

b

P̃

a1b(n1, k1?) D̃
(h)
ba2

(n1, n2, k1?, Q0) . (34)

Finally, for Q2
1,2 � Q

2
0, the third integral gives

f̃

(h)
a1a2

(n1, n2, k1?, k2?, Q1, Q2) = T

a1(Q1, k1?)Ta2(Q2, k2?)

⇥
X

b,c

P̃

a1b(n1, k1?) P̃a2c(n2, k2?) D̃
(h)
bc

(n1, n2, k1?, k2?) . (35)

The transverse momentum structure of the above expressions is illustrated in Fig. 2.

k1?

k2?

Q0

Q0

Four distinct regions of 
phase space depending on 

the ordering of scales.
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Multiplying term by term we obtain

D̃

(h)
a1a2

(n1, n2, Q1, Q2) = T

a1(Q1, Q0)Ta2(Q2, Q0) D̃a1a2(n1, n2, Q0, Q0)

+

Z
Q

2
2

Q

2
0

dk

2
2?

k

2
2?

⇢
T

a1(Q1, Q0)Ta2(Q2, k2?)
X

b

P̃

a2b(n2, k2?)
hX

a

00

Ẽ

ba

00(n2, k2?, Q0)D̃a1a
00(n1, n2, Q0, Q0)

i�

+

Z
Q

2
1

Q

2
0

dk

2
1?

k

2
1?

⇢
T

a1(Q1, k1?)Ta2(Q2, Q0)
X

b

P̃

a1b(n1, k1?)
hX

a

0

Ẽ

ba

0(n1, k1?, Q0)D̃a

0
a2(n1, n2, Q0, Q0)

i�

+

Z
Q

2
1

Q

2
0

dk

2
1?

k

2
1?

Z
Q

2
2

Q

2
0

dk

2
2?

k

2
2?

⇢
T

a1(Q1, k1?)Ta2(Q2, k2?)

⇥
X

b,c

P̃

a1b(n1, k1?) P̃a2c(n2, k2?)
h X

a

0
,a

00

Ẽ

ba

0(n1, k1?, Q0)Ẽca

00(n2, k2?, Q0)D̃a

0
a

00(n1, n2, Q0, Q0)
i�

. (32)

The first term in the sum on the rhs of the above equation corresponds to the evolution of the two partons from the
initial scale Q0 to the hard scales, Q1 and Q2, without real parton emissions. The two Sudakov form factors sum the
virtual corrections to such a process by integrating transverse momenta of the virtual partons up to the hard scales.
Thus, the two partons which enter the hard scattering retain their initial transverse momenta, k1,2? = Q0.

The expressions in the curly brackets under the integrals in Eq. (32) are the unintegrated double parton distribution

functions (UDPDFs), f̃ (h)
a1a2 , defined in three di↵erent regions of hard scales. Notice that the expressions in the square

brackets are the homogeneous DPDFs (30), taken at appropriate scales.
Thus, when Q

2
1 ⇠ Q

2
0 and Q

2
2 � Q

2
0, we find from the first integral

f̃

(h)
a1a2

(n1, n2, k1? = Q0, k2?, Q1, Q2) = T

a1(Q1, Q0)Ta2(Q2, k2?)
X

b

P̃

a2b(n2, k2?) D̃
(h)
a1b

(n1, n2, Q0, k2?) , (33)

Similarly, for Q2
1 � Q

2
0 and Q

2
2 ⇠ Q

2
0, we have from the the second integral

f̃

(h)
a1a2

(n1, n2, k1?, k2? = Q0, Q1, Q2) = T

a1(Q1, k1?)Ta2(Q2, Q0)
X

b

P̃

a1b(n1, k1?) D̃
(h)
ba2

(n1, n2, k1?, Q0) . (34)

Finally, for Q2
1,2 � Q

2
0, the third integral gives

f̃

(h)
a1a2

(n1, n2, k1?, k2?, Q1, Q2) = T

a1(Q1, k1?)Ta2(Q2, k2?)

⇥
X

b,c

P̃

a1b(n1, k1?) P̃a2c(n2, k2?) D̃
(h)
bc

(n1, n2, k1?, k2?) . (35)

The transverse momentum structure of the above expressions is illustrated in Fig. 2.
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B. Homogeneous part in the x-space

The corresponding expressions in the x-space can be easily found. For example, for Eq. (35) we obtain

f

(h)
a1a2

(x1, x2, k1?, k2?, Q1, Q2) = T

a1(Q1, k1?)Ta2(Q2, k2?)

⇥
X

b,c

Z 1�x2

x1

dz1

z1

Z 1�z1

x2

dz2

z2
P

a1b

⇣
x1

z1
, k1?

⌘
P

a2c

⇣
x2

z2
, k2?

⌘
D

(h)
bc

(z1, z2, k1?, k2?) . (36)

We need to discuss the singular behavior of this formula. Similarly to the case of the single parton distributions, the
integrals over z1,2 need to be regularized since the splitting functions can be singular for z1 = x1 and z2 = x2. After
changing the integration variables, z1 ! x1/z1 and z2 ! x2/z2, the singularities occur for z1,2 = 1. Thus, we change
the upper integration limits form 1 to 1 ! (1��1,2) to finally find for Q2

1 ⇠ Q

2
2 � Q

2
0

f

(h)
a1a2

(x1, x2, k1?, k2?, Q1, Q2) = T

a1(Q1, k1?)Ta2(Q2, k2?)

⇥
X

b,c

Z 1��1

x1
1�x2

dz1

z1

Z 1��2

x2
1�x1/z1

dz2

z2
P

a1b(z1, k1?)Pa2c(z2, k2?)D
(h)
bc

⇣
x1

z1
,

x2

z2
, k1?, k2?

⌘
. (37)

The same regularization is necessary for the Sudakov form factors, T
a1 and T

a2 , with �1 and �2 respectively, see
Eq. (8). Following the presentation of the single UPDFs, we choose for i = 1, 2

�
i

=
k

i?
Q

i

. (38)

Applying the same procedure to the rest of the UDPDFs, we find for Q2
1 ⇠ Q

2
0 and Q

2
2 � Q

2
0

f

(h)
a1a2

(x1, x2, k1? = Q0, k2?, Q1, Q2) = T

a1(Q1, Q0)Ta2(Q2, k2?)

⇥
X

b

Z 1��2

x2
1�x1

dz2

z2
P

a2b(z2, k2?)D
(h)
a1b

⇣
x1,

x2

z2
, Q0, k2?

⌘
. (39)

Notice that the transverse momentum k1? is not present on the rhs of the above equation but it does not mean the
lack of dependence on this variable. It is only restricted to the values k1? ⇠ Q0, since due to the condition Q0 ⇠ Q

there is no phase space for the first parton emission. This situation is reflected by the sole presence of the Sudakov
form factor T

a1(Q0, Q1) ⇠ 1 in the above formula.
Similarly, for Q2

1 � Q

2
0 and Q

2
2 ⇠ Q

2
0, we have

f

(h)
a1a2

(x1, x2, k1?, k2? = Q0, Q1, Q2) = T

a1(Q1, k1?)Ta2(Q2, Q0)

⇥
X

b

Z 1��1

x1
1�x2

dz1

z1
P

a1b(z1, k1?)D
(h)
ba2

⇣
x1

z1
, x2, k1?, Q0

⌘
. (40)

Eqs. (37)-(40) constitute the main results of our analysis in the x-space. They define the homogeneous part of the
unintegrated double parton distribution functions in three distinct domains of the hard scales, shown schematically
in Fig. IVA. Similarly to the single PDF case, the transverse momentum dependence is generated by the last step in
the evolution where the distributions become dependent on the transverse momentum and the hard scales. The three
unintegrated distributions were also discussed in [27] but only for real emission. Our results follow from a systematic
derivation with virtual corrections included. Notice that the defined UDPDFs are dimensionless quantities like the
integrated DPDFs.

In the presented analysis we neglected the spin and color dependence of the double parton distributions and consider
only the color singlet, spin averaged sector. For more information on this aspect see [27, 59] an reference therein.

[KGB: We need to discuss the r dependence at the end.]
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B. Homogeneous part in the x-space

The corresponding expressions in the x-space can be easily found. For example, for Eq. (35) we obtain

f

(h)
a1a2

(x1, x2, k1?, k2?, Q1, Q2) = T

a1(Q1, k1?)Ta2(Q2, k2?)

⇥
X

b,c

Z 1�x2

x1

dz1

z1

Z 1�z1

x2

dz2

z2
P

a1b

⇣
x1
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We need to discuss the singular behavior of this formula. Similarly to the case of the single parton distributions, the
integrals over z1,2 need to be regularized since the splitting functions can be singular for z1 = x1 and z2 = x2. After
changing the integration variables, z1 ! x1/z1 and z2 ! x2/z2, the singularities occur for z1,2 = 1. Thus, we change
the upper integration limits form 1 to 1 ! (1��1,2) to finally find for Q2
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The same regularization is necessary for the Sudakov form factors, T
a1 and T

a2 , with �1 and �2 respectively, see
Eq. (8). Following the presentation of the single UPDFs, we choose for i = 1, 2
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Applying the same procedure to the rest of the UDPDFs, we find for Q2
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Notice that the transverse momentum k1? is not present on the rhs of the above equation but it does not mean the
lack of dependence on this variable. It is only restricted to the values k1? ⇠ Q0, since due to the condition Q0 ⇠ Q

there is no phase space for the first parton emission. This situation is reflected by the sole presence of the Sudakov
form factor T

a1(Q0, Q1) ⇠ 1 in the above formula.
Similarly, for Q2
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2
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2
0, we have
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Eqs. (37)-(40) constitute the main results of our analysis in the x-space. They define the homogeneous part of the
unintegrated double parton distribution functions in three distinct domains of the hard scales, shown schematically
in Fig. IVA. Similarly to the single PDF case, the transverse momentum dependence is generated by the last step in
the evolution where the distributions become dependent on the transverse momentum and the hard scales. The three
unintegrated distributions were also discussed in [27] but only for real emission. Our results follow from a systematic
derivation with virtual corrections included. Notice that the defined UDPDFs are dimensionless quantities like the
integrated DPDFs.

In the presented analysis we neglected the spin and color dependence of the double parton distributions and consider
only the color singlet, spin averaged sector. For more information on this aspect see [27, 59] an reference therein.
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The corresponding expressions in the x-space can be easily found. For example, for Eq. (35) we obtain
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We need to discuss the singular behavior of this formula. Similarly to the case of the single parton distributions, the
integrals over z1,2 need to be regularized since the splitting functions can be singular for z1 = x1 and z2 = x2. After
changing the integration variables, z1 ! x1/z1 and z2 ! x2/z2, the singularities occur for z1,2 = 1. Thus, we change
the upper integration limits form 1 to 1 ! (1��1,2) to finally find for Q2
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The same regularization is necessary for the Sudakov form factors, T
a1 and T

a2 , with �1 and �2 respectively, see
Eq. (8). Following the presentation of the single UPDFs, we choose for i = 1, 2
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Applying the same procedure to the rest of the UDPDFs, we find for Q2
1 ⇠ Q

2
0 and Q

2
2 � Q

2
0

f

(h)
a1a2

(x1, x2, k1? = Q0, k2?, Q1, Q2) = T

a1(Q1, Q0)Ta2(Q2, k2?)

⇥
X

b

Z 1��2

x2
1�x1

dz2

z2
P

a2b(z2, k2?)D
(h)
a1b

⇣
x1,

x2

z2
, Q0, k2?

⌘
. (39)

Notice that the transverse momentum k1? is not present on the rhs of the above equation but it does not mean the
lack of dependence on this variable. It is only restricted to the values k1? ⇠ Q0, since due to the condition Q0 ⇠ Q

there is no phase space for the first parton emission. This situation is reflected by the sole presence of the Sudakov
form factor T

a1(Q0, Q1) ⇠ 1 in the above formula.
Similarly, for Q2
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0, we have
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Eqs. (37)-(40) constitute the main results of our analysis in the x-space. They define the homogeneous part of the
unintegrated double parton distribution functions in three distinct domains of the hard scales, shown schematically
in Fig. IVA. Similarly to the single PDF case, the transverse momentum dependence is generated by the last step in
the evolution where the distributions become dependent on the transverse momentum and the hard scales. The three
unintegrated distributions were also discussed in [27] but only for real emission. Our results follow from a systematic
derivation with virtual corrections included. Notice that the defined UDPDFs are dimensionless quantities like the
integrated DPDFs.

In the presented analysis we neglected the spin and color dependence of the double parton distributions and consider
only the color singlet, spin averaged sector. For more information on this aspect see [27, 59] an reference therein.
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We need to discuss the singular behavior of this formula. Similarly to the case of the single parton distributions, the
integrals over z1,2 need to be regularized since the splitting functions can be singular for z1 = x1 and z2 = x2. After
changing the integration variables, z1 ! x1/z1 and z2 ! x2/z2, the singularities occur for z1,2 = 1. Thus, we change
the upper integration limits form 1 to 1 ! (1��1,2) to finally find for Q2
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The same regularization is necessary for the Sudakov form factors, T
a1 and T

a2 , with �1 and �2 respectively, see
Eq. (8). Following the presentation of the single UPDFs, we choose for i = 1, 2
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Applying the same procedure to the rest of the UDPDFs, we find for Q2
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Notice that the transverse momentum k1? is not present on the rhs of the above equation but it does not mean the
lack of dependence on this variable. It is only restricted to the values k1? ⇠ Q0, since due to the condition Q0 ⇠ Q

there is no phase space for the first parton emission. This situation is reflected by the sole presence of the Sudakov
form factor T

a1(Q0, Q1) ⇠ 1 in the above formula.
Similarly, for Q2
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0, we have

f

(h)
a1a2

(x1, x2, k1?, k2? = Q0, Q1, Q2) = T

a1(Q1, k1?)Ta2(Q2, Q0)

⇥
X

b

Z 1��1

x1
1�x2

dz1

z1
P

a1b(z1, k1?)D
(h)
ba2

⇣
x1

z1
, x2, k1?, Q0

⌘
. (40)

Eqs. (37)-(40) constitute the main results of our analysis in the x-space. They define the homogeneous part of the
unintegrated double parton distribution functions in three distinct domains of the hard scales, shown schematically
in Fig. IVA. Similarly to the single PDF case, the transverse momentum dependence is generated by the last step in
the evolution where the distributions become dependent on the transverse momentum and the hard scales. The three
unintegrated distributions were also discussed in [27] but only for real emission. Our results follow from a systematic
derivation with virtual corrections included. Notice that the defined UDPDFs are dimensionless quantities like the
integrated DPDFs.

In the presented analysis we neglected the spin and color dependence of the double parton distributions and consider
only the color singlet, spin averaged sector. For more information on this aspect see [27, 59] an reference therein.
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We need to discuss the singular behavior of this formula. Similarly to the case of the single parton distributions, the
integrals over z1,2 need to be regularized since the splitting functions can be singular for z1 = x1 and z2 = x2. After
changing the integration variables, z1 ! x1/z1 and z2 ! x2/z2, the singularities occur for z1,2 = 1. Thus, we change
the upper integration limits form 1 to 1 ! (1��1,2) to finally find for Q2
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The same regularization is necessary for the Sudakov form factors, T
a1 and T

a2 , with �1 and �2 respectively, see
Eq. (8). Following the presentation of the single UPDFs, we choose for i = 1, 2
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Applying the same procedure to the rest of the UDPDFs, we find for Q2
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Notice that the transverse momentum k1? is not present on the rhs of the above equation but it does not mean the
lack of dependence on this variable. It is only restricted to the values k1? ⇠ Q0, since due to the condition Q0 ⇠ Q

there is no phase space for the first parton emission. This situation is reflected by the sole presence of the Sudakov
form factor T

a1(Q0, Q1) ⇠ 1 in the above formula.
Similarly, for Q2
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0, we have
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Eqs. (37)-(40) constitute the main results of our analysis in the x-space. They define the homogeneous part of the
unintegrated double parton distribution functions in three distinct domains of the hard scales, shown schematically
in Fig. IVA. Similarly to the single PDF case, the transverse momentum dependence is generated by the last step in
the evolution where the distributions become dependent on the transverse momentum and the hard scales. The three
unintegrated distributions were also discussed in [27] but only for real emission. Our results follow from a systematic
derivation with virtual corrections included. Notice that the defined UDPDFs are dimensionless quantities like the
integrated DPDFs.

In the presented analysis we neglected the spin and color dependence of the double parton distributions and consider
only the color singlet, spin averaged sector. For more information on this aspect see [27, 59] an reference therein.
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We need to discuss the singular behavior of this formula. Similarly to the case of the single parton distributions, the
integrals over z1,2 need to be regularized since the splitting functions can be singular for z1 = x1 and z2 = x2. After
changing the integration variables, z1 ! x1/z1 and z2 ! x2/z2, the singularities occur for z1,2 = 1. Thus, we change
the upper integration limits form 1 to 1 ! (1��1,2) to finally find for Q2
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The same regularization is necessary for the Sudakov form factors, T
a1 and T

a2 , with �1 and �2 respectively, see
Eq. (8). Following the presentation of the single UPDFs, we choose for i = 1, 2
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Applying the same procedure to the rest of the UDPDFs, we find for Q2
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Notice that the transverse momentum k1? is not present on the rhs of the above equation but it does not mean the
lack of dependence on this variable. It is only restricted to the values k1? ⇠ Q0, since due to the condition Q0 ⇠ Q

there is no phase space for the first parton emission. This situation is reflected by the sole presence of the Sudakov
form factor T

a1(Q0, Q1) ⇠ 1 in the above formula.
Similarly, for Q2
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Eqs. (37)-(40) constitute the main results of our analysis in the x-space. They define the homogeneous part of the
unintegrated double parton distribution functions in three distinct domains of the hard scales, shown schematically
in Fig. IVA. Similarly to the single PDF case, the transverse momentum dependence is generated by the last step in
the evolution where the distributions become dependent on the transverse momentum and the hard scales. The three
unintegrated distributions were also discussed in [27] but only for real emission. Our results follow from a systematic
derivation with virtual corrections included. Notice that the defined UDPDFs are dimensionless quantities like the
integrated DPDFs.

In the presented analysis we neglected the spin and color dependence of the double parton distributions and consider
only the color singlet, spin averaged sector. For more information on this aspect see [27, 59] an reference therein.
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We need to discuss the singular behavior of this formula. Similarly to the case of the single parton distributions, the
integrals over z1,2 need to be regularized since the splitting functions can be singular for z1 = x1 and z2 = x2. After
changing the integration variables, z1 ! x1/z1 and z2 ! x2/z2, the singularities occur for z1,2 = 1. Thus, we change
the upper integration limits form 1 to 1 ! (1��1,2) to finally find for Q2
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The same regularization is necessary for the Sudakov form factors, T
a1 and T

a2 , with �1 and �2 respectively, see
Eq. (8). Following the presentation of the single UPDFs, we choose for i = 1, 2
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Applying the same procedure to the rest of the UDPDFs, we find for Q2
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Notice that the transverse momentum k1? is not present on the rhs of the above equation but it does not mean the
lack of dependence on this variable. It is only restricted to the values k1? ⇠ Q0, since due to the condition Q0 ⇠ Q

there is no phase space for the first parton emission. This situation is reflected by the sole presence of the Sudakov
form factor T

a1(Q0, Q1) ⇠ 1 in the above formula.
Similarly, for Q2
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Eqs. (37)-(40) constitute the main results of our analysis in the x-space. They define the homogeneous part of the
unintegrated double parton distribution functions in three distinct domains of the hard scales, shown schematically
in Fig. IVA. Similarly to the single PDF case, the transverse momentum dependence is generated by the last step in
the evolution where the distributions become dependent on the transverse momentum and the hard scales. The three
unintegrated distributions were also discussed in [27] but only for real emission. Our results follow from a systematic
derivation with virtual corrections included. Notice that the defined UDPDFs are dimensionless quantities like the
integrated DPDFs.

In the presented analysis we neglected the spin and color dependence of the double parton distributions and consider
only the color singlet, spin averaged sector. For more information on this aspect see [27, 59] an reference therein.
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B. Homogeneous part in the x-space

The corresponding expressions in the x-space can be easily found. For example, for Eq. (35) we obtain
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⌘
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(z1, z2, k1?, k2?) . (36)

We need to discuss the singular behavior of this formula. Similarly to the case of the single parton distributions, the
integrals over z1,2 need to be regularized since the splitting functions can be singular for z1 = x1 and z2 = x2. After
changing the integration variables, z1 ! x1/z1 and z2 ! x2/z2, the singularities occur for z1,2 = 1. Thus, we change
the upper integration limits form 1 to 1 ! (1��1,2) to finally find for Q2
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2
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. (37)

The same regularization is necessary for the Sudakov form factors, T
a1 and T

a2 , with �1 and �2 respectively, see
Eq. (8). Following the presentation of the single UPDFs, we choose for i = 1, 2

�
i

=
k

i?
Q

i

. (38)

Applying the same procedure to the rest of the UDPDFs, we find for Q2
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2
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0
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Notice that the transverse momentum k1? is not present on the rhs of the above equation but it does not mean the
lack of dependence on this variable. It is only restricted to the values k1? ⇠ Q0, since due to the condition Q0 ⇠ Q

there is no phase space for the first parton emission. This situation is reflected by the sole presence of the Sudakov
form factor T

a1(Q0, Q1) ⇠ 1 in the above formula.
Similarly, for Q2
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2
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⇣
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Eqs. (37)-(40) constitute the main results of our analysis in the x-space. They define the homogeneous part of the
unintegrated double parton distribution functions in three distinct domains of the hard scales, shown schematically
in Fig. IVA. Similarly to the single PDF case, the transverse momentum dependence is generated by the last step in
the evolution where the distributions become dependent on the transverse momentum and the hard scales. The three
unintegrated distributions were also discussed in [27] but only for real emission. Our results follow from a systematic
derivation with virtual corrections included. Notice that the defined UDPDFs are dimensionless quantities like the
integrated DPDFs.

In the presented analysis we neglected the spin and color dependence of the double parton distributions and consider
only the color singlet, spin averaged sector. For more information on this aspect see [27, 59] an reference therein.
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the evolution where the distributions become dependent on the transverse momentum and the hard scales. The three
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Homogeneous part

integrated

integrated

k2?

k1? k2? unintegrated

unintegratedk1?

k1? unintegrated unintegratedk2?
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Non-homogeneous part
In principle the same method can be applied to the non-homogeneous term:

10

A. Mellin moment formulation

Let us consider now the non-homogeneous part of eq. (27) for µ1,2 = Q1,2,

D̃

(nh)
a1a2

(n1, n2, Q1, Q2) =

Z
Q
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min

Q
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0

dµ

2
s

µ

2
s

X

a

0
,a

00

Ẽ

a1a
0(n1, Q1, µs

) Ẽ
a2a

00(n2, Q2, µs

) D̃(sp)
a

0
a

00(n1, n2, µs

) , (46)

where Q

2
min = min{Q2

1, Q
2
2}. Due to the integration over µ2

s

, this contribution is sizable only in the case Q

2
1,2 � Q

2
0,

the condition we consider from now on.
Substituting Eq. (21) we obtain
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⇢
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) �
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⇢
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) �
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)

�
, (47)

and multiplying term by term we find
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Z
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
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+
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2
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dk

2
2?

k

2
2?

⇢
T

a1(Q1, µs

)T
a2(Q2, k2?)

X

b

P̃

a2b(n2, k2?)
X

a

00

Ẽ
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dk
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Q
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s
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⇥
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��
. (48)

Introducing the following relation for i = 1, 2,

Z
Q

2
i

µ

2
s

dk

2
i?

k

2
i?

=

Z
Q

2
i

Q

2
0

dk

2
i?

k

2
i?

✓(k2
i? � µ

2
s

) , (49)

we can change the order of the integrations over µ2
s

and transverse momenta k

2
i? to find the non-homogenenous part

of the UDPDFs, f̃ (nh)
a1a2 .

For example, we have from the third integral in the square brackets

f̃

(nh)
a1a2

(n1, n2, k1?, k2?, Q1, Q2) = T

a1(Q1, k1?)Ta2(Q2, k2?)
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b,c
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⇥
Z

Q
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Q
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0

dµ

2
s

µ

2
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✓(k21? � µ
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s

) ✓(k22? � µ

2
s

) D̃(sp)
bc

(n1, n2, k1?, k2?, µs

) , (50)
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Again one ends  up with four terms, their importance depends on the scale ordering.

However, due to the internal integration over scale         each of the terms can have 
perturbative  contribution.
In particular first term has no transverse dependence but is perturbative when

µs

µs ⇠ Q1 ⇠ Q2

Plugging in the expressions for parton-to-parton evolution one obtains:
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Non-homogeneous part
• Transverse momentum dependence can be also generated when parent parton splits 

into daughter partons with non-negligible transverse momenta.

• Need to take into account exact kinematics at the splitting vertex.

Diehl, Ostermeier, Schaefer

12

For the distributions (52) and (53) we have, respectively,

f

(nh)
a1a2

(x1, x2, k1?, k2?, Q1, Q2) = T

a2(Q2, k2?)

Z 1��2

x2
1�x1

dz2

z2

X

b

P

a2b(z2, k2?)

⇥
Z

Q

2
min

Q

2
0

dµ

2
s

µ

2
s

✓(k22? � µ

2
s

)T
a1(Q1, µs

)D(sp)
a1b

⇣
x1,

x2

z2
, µ

s

, k2?, µs

⌘
(56)

and
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C. Discussion of parton splitting

This contribution needs to be evaluated separately, taking into account exact kinematics in the splitting vertex.
The calculations for this contribution have been presented in [27], with the formula having the following general form
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where we defined the di↵erence and the sum of the transverse momenta

k? =
1

2
(k1? � k2?) , ? = k1? + k2? , (59)

r is the transverse momentum transfer and summation over two transverse components, l, l0 = 1, 2, is performed
[KGB: Explain a in f

a
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depends on the process. The function f
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is the Boer-Mulders function [? ] [AS: Reference for Boer-Moulders, some more comments about it]. In
general, the perturbative splitting process expressed in the formula Eq. (58) embodies a very rich spin structure
through the kernels T ll
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and U
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.

The standard collinear splitting contribution to the evolution equations of the integrated DPDFs can be obtained
from the above formula by first integrating over k1? and k2? and isolating the ultraviolet singularity. The integration
over the transverse momenta leads to the vanishing of the contribution proportional to the Boer-Moulders function in
Eq. (58) due to the rotational invariance. The kernels T ll

0

a1a2
give rise to the collinear splitting functions and eventually

Eq. (25) is recovered.
We generalize formula (58) by introducing a hard scale Q in the UPDFs there, as defined as in Sec. II,
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Since the Boer-Moulders function is not very well constrained we also take a simplified version of formula Eq. (58),
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[KGB: Is it o’key to put Q in f

a

which is in the middle of the graph but Q enters from the splitting
two ends? I got confused.] Notice that we keep the additional transverse momentum r on the rhs. In Fig. 3 we
schematically illustrate the content of Eq. (61).
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For the distributions (52) and (53) we have, respectively,
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C. Discussion of parton splitting

This contribution needs to be evaluated separately, taking into account exact kinematics in the splitting vertex.
The calculations for this contribution have been presented in [27], with the formula having the following general form
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where we defined the di↵erence and the sum of the transverse momenta

k? =
1

2
(k1? � k2?) , ? = k1? + k2? , (59)

r is the transverse momentum transfer and summation over two transverse components, l, l0 = 1, 2, is performed
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is the Boer-Mulders function [? ] [AS: Reference for Boer-Moulders, some more comments about it]. In
general, the perturbative splitting process expressed in the formula Eq. (58) embodies a very rich spin structure
through the kernels T ll
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The standard collinear splitting contribution to the evolution equations of the integrated DPDFs can be obtained
from the above formula by first integrating over k1? and k2? and isolating the ultraviolet singularity. The integration
over the transverse momenta leads to the vanishing of the contribution proportional to the Boer-Moulders function in
Eq. (58) due to the rotational invariance. The kernels T ll

0

a1a2
give rise to the collinear splitting functions and eventually

Eq. (25) is recovered.
We generalize formula (58) by introducing a hard scale Q in the UPDFs there, as defined as in Sec. II,
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Since the Boer-Moulders function is not very well constrained we also take a simplified version of formula Eq. (58),
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[KGB: Is it o’key to put Q in f

a

which is in the middle of the graph but Q enters from the splitting
two ends? I got confused.] Notice that we keep the additional transverse momentum r on the rhs. In Fig. 3 we
schematically illustrate the content of Eq. (61).
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For the distributions (52) and (53) we have, respectively,
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C. Discussion of parton splitting

This contribution needs to be evaluated separately, taking into account exact kinematics in the splitting vertex.
The calculations for this contribution have been presented in [27], with the formula having the following general form
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where we defined the di↵erence and the sum of the transverse momenta

k? =
1

2
(k1? � k2?) , ? = k1? + k2? , (59)

r is the transverse momentum transfer and summation over two transverse components, l, l0 = 1, 2, is performed
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general, the perturbative splitting process expressed in the formula Eq. (58) embodies a very rich spin structure
through the kernels T ll
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The standard collinear splitting contribution to the evolution equations of the integrated DPDFs can be obtained
from the above formula by first integrating over k1? and k2? and isolating the ultraviolet singularity. The integration
over the transverse momenta leads to the vanishing of the contribution proportional to the Boer-Moulders function in
Eq. (58) due to the rotational invariance. The kernels T ll

0

a1a2
give rise to the collinear splitting functions and eventually

Eq. (25) is recovered.
We generalize formula (58) by introducing a hard scale Q in the UPDFs there, as defined as in Sec. II,
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Since the Boer-Moulders function is not very well constrained we also take a simplified version of formula Eq. (58),
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[KGB: Is it o’key to put Q in f

a

which is in the middle of the graph but Q enters from the splitting
two ends? I got confused.] Notice that we keep the additional transverse momentum r on the rhs. In Fig. 3 we
schematically illustrate the content of Eq. (61).
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For the distributions (52) and (53) we have, respectively,
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C. Discussion of parton splitting

This contribution needs to be evaluated separately, taking into account exact kinematics in the splitting vertex.
The calculations for this contribution have been presented in [27], with the formula having the following general form
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where we defined the di↵erence and the sum of the transverse momenta

k? =
1
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(k1? � k2?) , ? = k1? + k2? , (59)

r is the transverse momentum transfer and summation over two transverse components, l, l0 = 1, 2, is performed
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general, the perturbative splitting process expressed in the formula Eq. (58) embodies a very rich spin structure
through the kernels T ll
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The standard collinear splitting contribution to the evolution equations of the integrated DPDFs can be obtained
from the above formula by first integrating over k1? and k2? and isolating the ultraviolet singularity. The integration
over the transverse momenta leads to the vanishing of the contribution proportional to the Boer-Moulders function in
Eq. (58) due to the rotational invariance. The kernels T ll

0

a1a2
give rise to the collinear splitting functions and eventually

Eq. (25) is recovered.
We generalize formula (58) by introducing a hard scale Q in the UPDFs there, as defined as in Sec. II,
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Since the Boer-Moulders function is not very well constrained we also take a simplified version of formula Eq. (58),
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[KGB: Is it o’key to put Q in f

a

which is in the middle of the graph but Q enters from the splitting
two ends? I got confused.] Notice that we keep the additional transverse momentum r on the rhs. In Fig. 3 we
schematically illustrate the content of Eq. (61).

Boer-Mulders function

TMD function

Transverse momentum dependent splitting

Need to consistently combine these terms. Work in progress...

splitting contribution from gluon splitting
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• Summary & outlook 1 - initial conditions:

• Double integrated PDFs need consistent initial conditions for the 
evolution.

• Beta functions for single PDF and Dirichlet distributions for double PDF 
with suitably matched powers and coefficients are good initial 
conditions. The momentum sum rule and quark number sum rule are 
satisfied simultaneously.

• Extending the formalism: expansion in terms of Dirichlet distributions.  
First numerical tests with gluons. Sum rules provide relations between 
the powers at small and large x for single and double parton 
distributions.

• In principle one can include quarks into the formalism; some additional 
constraints needed.

• Is there any deeper physical meaning to the presented algorithm?

Summary and outlook

24 Anna Stasto, ISMD2016



• Summary & outlook 2 - transverse momentum dependence:

• First attempt to extend the KMR approach to dPDFs.

• Homogeneous term quite straightforward, can be implemented 
numerically. Expression will naturally include correlations through the 
integrated dPDFs.  Additional correlations enter through the 
regularization cutoffs.

• In-homogeneous term partially can be treated by the same method.

• Additional contribution due to perturbative splitting needs to be taken 
into account. Goes beyond the accuracy of the KMR framework. 

• Need to consistently match different contributions. Perform numerical 
analysis.

Summary and outlook

25 Anna Stasto, ISMD2016
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Initial conditions: quarks and gluons

X

f1

D̃f1f2(2, n2) = D̃f2(n2)� D̃f2(n2 + 1) D̃qif2(1, n2)� D̃q̄if2(1, n2) = Aif2D̃f2(n2)

Aif2 = Ni � �f2qi + �f2q̄i

Momentum sum rule with quarks: Quark number sum rule:

Df1f2(x1, x2) = N2 x
�↵̃f1

1 x

�↵̃f2

2 (1� x1 � x2)
�̃f1f2Ansatz for dPDF with different flavors:

• Can perform the same analysis as before. 
• Conditions for  powers for dPDFs and sPDFs are exactly the same from both momentum and 

quark sum rules. 
• Can satisfy simultaneously both sum rules:

↵̃f2 = ↵f2

↵̃f1 = ↵f1

�̃f1f2 = �̃f2f1

Small x powers are 
identical:

Large x powers:

Symmetry with 
respect to the 

parton exchange

Implies the 
correlation of 

powers in sPDFs:
�f2 + ↵f1 = �f1 + ↵f2

Df (x) = N1 x
�↵f

(1� x)�
f

Ansatz for sPDF :

�̃f1f2 = �f2 + ↵f1 � 1
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