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Outline
Introduction
Measurement of 3-particle correlations from STAR

Comparison to models & possible interpretations

Goal isto :
Map out 3D structure of HIC
Constrain n/s with more precision

Provide baseline for CME




Azimuthal correlations in Relativistic Heavy lon

collisions

3.
_ //

Reaction

;ﬂang\»
Wrp

s MC model
fit with harmonics

)

.

Vv
1,2,3,4,5

(cos(n(¢p1 — @2

Conventional measurement — two-particle correlations :{(cos(n(¢1 — ¢2)))

This measurement — three-particle correlations : (cos(moi +ngs—(m + n)@s3))




Definition of the observables

 (General (3-particle) correlator :

Cm,n,m—l—n — <<COS(m¢1 - n¢2 — (m T n)¢3)>>

e (Connection to event-plane correlator (based on flow interpretation)

Crnomtn = (UmUnUmin cos(mU,, +nV,, — (m+n)¥,,1n))

Different harmonic of C, ,.m+n— sensitive to different physics

Cli19 = <COS((¢I—L + T — 263)))— charge separation w.rto event
plane driven by chiral magnetic effect
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Why study three-particle correlations ?

 Two particle correlation w.r.to RP :
More freedom to map out both transverse and longitudinal structure of the fireball

 Connection to flow harmonic & event-plane correlations :
Non-linear hydrodynamic response more sensitive to viscosity

» Baseline for Chiral Magnetic Effects (CME) :

Essential to understand components driven by initial-state, magnetohydrodynamics

Going beyond conventional measurements of flow harmonics



Motivation-| (3D structure of HIC)

Initial-state fluctuations
Transverse Longitudinal
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Breaking of boost-invariance — due to longitudinal fluctuations

These effects — reterred as twist, torque, event-plane decorrelation

3D initial state — can be probed by Cm nm+n & its An dependence
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Motivation-| (3D structure of HIC)

v3 is driven by both geometry + fluctuation

In-plane fluctuations Out-of-plane fluctuations

v1 drives vs in mid-central collisions — can be probed by C123
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Motivation-| (3D structure of HIC)
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Motivation-ll (Non-linear hydro response)

Better probe for transport properties of QGP

— More sensitivity due to non-linear hydro response

(o35 = (V20305 cos(2Wy + 3W3 — 5Us))

VAR

Initial geometry 1 2 3 4 5
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Motivation-ll (Non-linear hydro response)

Better probe for transport properties of QGP

— More sensitivity due to non-linear hydro response

(o35 = <UQU3U5 COS(Q\IJQ + 3Wg — 5\115)>
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Motivation-ll (Non-linear hydro response)

Better probe for transport properties of QGP

— More sensitivity due to non-linear hydro response

(o35 = <UQU3U5 COS(Q\IJQ + 3Wg — 5\115)>
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Effect of Viscosity less-damping more-damping

Ws — more correlated to Wo & W3 due to viscous damping

Non-linear response — can be probed by sign change of Cm nm+n
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Motivation-lll (Towards constraining n/s(T))

Viscosity has temperature dependence

n/s (T) — not yet fully constrained

Models assume parametrization
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Motivation-lll (Towards constraining n/s(T))
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Viscosity has temperature dependence

n/s (T) — not yet fully constrained

Models assume parametrization

Measurements at RHIC are essential
to constrain n/s (T) at low temperatures
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STAR detector system

This analysis uses inclusive
charged particles detected by
the Time-Projection Chamber

Data sets used are from year 2004, 2010-12, & 2014 :
Au+Au collisions at Vsyn = 200, 62.4, 39, 27, 19.6, 14.5, 11.5, 7.7 GeV
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Detalils of the cuts & methods

« Centrality selection: Uncorrected multiplicity in |n|<0.5

* Acceptance cuts: O<dp<2m, |n|<1, pr> 0.2 GeV/c

TPC acceptance/weight
(used in this analysis)

We use Q-Cumulant method & estimate :

<

@ N =4 O =2 N oW

o  [ig.k

m,n,m+n

<Zwiijk cos(mqbz' + neo; — (m + n)gbk)>

> Wi Wi

1,7,k
Wi, 5.k — Weight estimated in bins of sagitta, n-¢ of tracks
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Results : An dependence of Cmnm+n
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Results : An dependence of Cmnm+n
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Results : An dependence of Cmnm+n
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Strong An dependence of Ci23 — due to n asymmetric of v
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Measurement of pt dependence of Cmnm+n

Different pt regime — sensitivity to different physics

Au + Au 200 GeV Au + Au 200 GeV

5 — — 03 ——————
0.1 "Npart x C112 /P71 + 0.2 | Npart x G123 /P71 1 vy
R T el S 01 | o
mm@@gm n0 o + 5 () : o°? ++
'01 B (0] mm 7] Jm ()]
o § 0 r-m= mmwﬁmgggmﬁﬁ,h'jah'; """"
02r¢ @ 4:13 W 01 | g0 0-0 %% " +
-0.3 r0-5% -e- . 02 +t0-5% -e-
70-80% —&- 70-80% —&-
0.4 L—— e 03 L——— e
1 10 1 10
Pt 1 (GeV) Pr1 (GeV)

High prt & peripheral events = momentum conservation from jets
Ci12: Cizs — (-)

P11
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collisions In contrast to the models

Magnitude follows initial state but sign depends on final state effects
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Ci12:

- Measures baseline for CME

- Non-zero correlations for central
collisions In contrast to the models

Cio3:

- Indicates v+ drives vs (in mid-central
collisions) as predicted by Teaney & Yan

- Non zero (negative) for central collisions

Magnitude follows initial state but sign depends on final state effects
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Centrality dependence of higher order Cm n,m+n
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Centrality dependence of higher order Cm n,m+n
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Energy dependence of Cm nm+n
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Results will improve modeling of heavy ion collisions at low energy
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Tomography of particle flow

Combining all results together can give us a picture of collisions
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Tomography of particle flow

Combining all results together can give us a picture of collisions
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Tomography of particle flow
Combining all results together can give us a picture of collisions
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Tomography of particle flow

Combining all results together can give us a picture of collisions
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Tomography of particle flow

Combining all results together can give us a picture of collisions
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Summary

Measurement of charge inclusive three particle correlations :

 (Goes beyond conventional measurements of flow
e Potential for constraining n/s (T)
* [ndicates presence of non-linear hydrodynamic response

e (Constrains modeling of 3D-initial state and hydro evolution

Outlook

PID, charge dependence of Cmnm+n
Measurement of Cmnm+n Over wider rapidity range with STAR upgrade
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Backup
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Motivation-IV (Insights beyond flow-I)

pt dependence of Cmn,m+n

Momentum conservation

— PT

Flux tube shadowing
Squeeze-out

hot-spot / flux tube

high-pr

| + 20-30%
- * 70-80%

lowW-pT
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Motivation-1V (Insights beyond flow-Il)

An dependence of Cmnm+n

Jets/mini-jets correlated to reaction plane

large An13 — forced to be back-to-back
C1o3 ~ cos(-3m), cos(rt) — (-1)
Coo4 ~ cOS(-4m), cos(2r1) — (+1)

o
00

C1o3 ~ (cos(0),cos(-2m)) = (+1)

KSR 2 Caza ~ (c08(0),c08(-2m) = (+1)
K > small Ani1z— no constrain, more probable to be same-sided
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