Forward physics with proton tagging at the LHC

Christophe Royon University of Kansas, Lawrence, USA

ISMD 2016, Jeju Island, August 28- September 2 2016

- Pomeron structure in terms of quarks/gluons
- Tests of BFKL resummation
- Photon exchanges processes and beyond standard model physics
- Anomalous quartic $\gamma\gamma\gamma\gamma\gamma$ couplings using intact protons

Diffraction at Tevatron/LHC

Kinematic variables

- *t*: 4-momentum transfer squared
- ξ_1, ξ_2 : proton fractional momentum loss (momentum fraction of the proton carried by the pomeron)
- $\beta_{1,2} = x_{Bj,1,2}/\xi_{1,2}$: Bjorken-x of parton inside the pomeron
- $M^2 = s\xi_1\xi_2$: diffractive mass produced
- $\Delta y_{1,2} \sim \Delta \eta \sim \log 1/\xi_{1,2}$: rapidity gap

What is AFP/CT-PPS?

- Tag and measure protons at ± 210 m: AFP (ATLAS Forward Physics), CT-PPS (CMS TOTEM Precision Proton Spectrometer)
- All diffractive cross sections computed using the Forward Physics Monte Carlo (FPMC)
- Sensitivity to high mass central system, X, as determined using AFP: Very powerful for exclusive states: kinematical constraints coming from AFP and CT-PPS proton measurements

Hard diffraction at the LHC

- Dijet production: dominated by gg exchanges; γ+jet production: dominated by qg exchanges (C. Marquet, C. Royon, M. Saimpert, D. Werder, arXiv:1306.4901)
- Jet gap jet in diffraction: Probe BFKL (C. Marquet, C. Royon, M. Trzebinski, R. Zlebcik, Phys. Rev. D 87 (2013) 034010; O. Kepka, C. Marquet, C. Royon, Phys. Rev. D79 (2009) 094019; Phys.Rev. D83 (2011) 034036)
- Three aims
 - Is it the same object which explains diffraction in pp and ep?
 - Further constraints on the structure of the Pomeron as was determined at HERA
 - Survival probability: difficult to compute theoretically, needs to be measured, inclusive diffraction is optimal place for measurement

Inclusive diffraction at the LHC: sensitivity to gluon density

- Predict DPE dijet cross section at the LHC in AFP acceptance, jets with $p_T > 20$ GeV, reconstructed at particle level using anti-k_T algorithm
- Sensitivity to gluon density in Pomeron especially the gluon density on Pomeron at high β : multiply the gluon density by $(1 \beta)^{\nu}$ with $\nu = -1, ..., 1$
- Measurement possible with 10 pb⁻¹, allows to test if gluon density is similar between HERA and LHC (universality of Pomeron model)
- Dijet mass fraction: dijet mass divided by total diffractive mass $(\sqrt{\xi_1\xi_2S})$

Inclusive diffraction at the LHC: sensitivity to quark densities

- Predict DPE $\gamma+{\rm jet}$ divided by dijet cross section at the LHC
- Sensitivity to universality of Pomeron model
- Sensitivity to quark density in Pomeron, and of assumption: $u = d = s = \overline{u} = \overline{d} = \overline{s}$ used in QCD fits at HERA

- Measure the average W charge asymmetry in ξ bins to probe the quark content of the proton: $A = (N_{W^+} N_{W^-})/(N_{W^+} + N_{W^-})$
- Test if u/d is equal to 0.5, 1 or 2 as an example
- A. Chuinard, C. R., R. Staszewski, JHEP 1604 (2016) 092

Looking for BFKL effects

- Dokshitzer Gribov Lipatov Altarelli Parisi (DGLAP): Evolution in Q^2
- Balitski Fadin Kuraev Lipatov (BFKL): Evolution in x

Aim: Understanding the proton structure (quarks, gluons)

Q² : resolution inside the proton (like a microscope)

X : Proton momentum fraction carried away by the interacting quark

Jet gap jet events in diffraction

- Study BFKL dynamics using jet gap jet events in DPE
- See: C. Marquet, C. Royon, M. Trzebinski, R. Zlebcik, Phys. Rev. D 87 (2013) 034010

Exclusive diffraction

- Many exclusive channels can be studied: jets, χ_C , charmonium, J/Ψ
- Possibility to reconstruct the properties of the object produced exclusively (via photon and gluon exchanges) from the tagged proton
- CMS/TOTEM has the possibility to discover/exclude glueballs at low masses: Check the $f_0(1500)$ or $f_0(1710)$ glueball candidates
- Simulation of signal $f_0(1710) \rightarrow \rho^0 \rho^0$ and non resonant $\rho^0 \rho^0$

Search for $\gamma\gamma WW$, $\gamma\gamma\gamma\gamma\gamma$ quartic anomalous coupling

- Study of the process: $pp \to ppWW$, $pp \to ppZZ$, $pp \to pp\gamma\gamma$
- Standard Model: $\sigma_{WW} = 95.6$ fb, $\sigma_{WW}(W = M_X > 1TeV) = 5.9$ fb
- Process sensitive to anomalous couplings: $\gamma\gamma WW$, $\gamma\gamma ZZ$, $\gamma\gamma\gamma\gamma\gamma$; motivated by studying in detail the mechanism of electroweak symmetry breaking, predicted by extradim. models *Concentrate on* $\gamma\gamma\gamma\gamma$ *anomalous coupling in this talk*
- Rich γγ physics at LHC: see E. Chapon, O. Kepka, C. Royon, Phys. Rev. D78 (2008) 073005; Phys. Rev. D81 (2010) 074003; S.Fichet, G. von Gersdorff, O. Kepka, B. Lenzi, C. Royon, M. Saimpert, Phys.Rev. D89 (2014) 114004; S.Fichet, G. von Gersdorff, B. Lenzi, C. Royon, M. Saimpert, JHEP 1502 (2015) 165; S. Fichet, G. von Gersdorff, C. Royon Phys. Rev. Lett. 116 (2016) no 23, 231801 and Phys. Rev. D93 (2016) no 7, 075031; J. de Favereau et al., arXiv:0908.2020.

SM $\gamma\gamma$ exclusive production

- QCD production dominates at low $m_{\gamma\gamma}$, QED at high $m_{\gamma\gamma}$
- Important to consider W loops at high $m_{\gamma\gamma}$
- At high masses ($\sim 750~{\rm GeV}$), the photon induced processes are dominant
- Conclusion: Two photons and two tagged protons means photon-induced process

Motivations to look for quartic $\gamma\gamma$ anomalous couplings

• Two effective operators at low energies

$$\mathcal{L}_{4\gamma} = \zeta_1^{\gamma} F_{\mu\nu} F^{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} + \zeta_2^{\gamma} F_{\mu\nu} F^{\nu\rho} F_{\rho\lambda} F^{\lambda\mu}$$

• $\gamma\gamma\gamma\gamma$ couplings can be modified in a model independent way by loops of heavy charge particles

$$\zeta_1 = \alpha_{em}^2 Q^4 m^{-4} N c_{1,s}$$

where the coupling depends only on Q^4m^{-4} (charge and mass of the charged particle) and on spin, $c_{1,s}$ depends on the spin of the particle This leads to ζ_1 of the order of 10^{-14} - 10^{-13}

• ζ_1 can also be modified by neutral particles at tree level (extensions of the SM including scalar, pseudo-scalar, and spin-2 resonances that couple to the photon) $\zeta_1 = (f_s m)^{-2} d_{1,s}$ where f_s is the $\gamma \gamma X$ coupling of the new particle to the photon, and $d_{1,s}$ depends on the spin of the particle; for instance, 2 TeV dilatons lead to $\zeta_1 \sim 10^{-13}$

★ Warped Extra Dimensions solve hierarchy problem of SM ★ 5th dimension bounded by two branes ★ SM on the visible (or TeV) brane ★ The Kaluza Klein modes of the graviton couple with TeV strength $\mathcal{L}^{\gamma\gamma h} = f^{-2} h_{\mu\nu}^{KK} (\frac{1}{4}\eta_{\mu\nu}F_{\rho\lambda}^2 - F_{\mu\rho}F_{\rho\nu})$ $f \sim \text{TeV}$ $m_{KK} \sim \text{few TeV}$ ★ Effective 4-photon couplings $\zeta_i \sim 10^{-14} - 10^{-13} \text{ GeV}^{-2}$ possible ★ The radion can produce similar effective couplings

- Which models/theories are we sensitive to using AFP/CT-PPS
- Beyond standard models predict anomalous couplings of ${\sim}10^{-14}$ -10 $^{-13}$
- Work in collaboration with Sylvain Fichet, Gero von Gersdorff

One aside: what is pile up at LHC?

- The LHC machine collides packets of protons
- Due to high number of protons in one packet, there can be more than one interaction between two protons when the two packets collide
- Typically up to 50 pile up events

Search for quartic $\gamma\gamma$ anomalous couplings

- Search for $\gamma\gamma\gamma\gamma\gamma$ quartic anomalous couplings
- Couplings predicted by extra-dim, composite Higgs models
- Analysis performed at hadron level including detector efficiencies, resolution effects, pile-up...

Search for quartic $\gamma\gamma$ anomalous couplings

Cut / Process	Signal (full)	Signal with (without) f.f (EFT)	Excl.	DPE	DY, di-jet + pile up	$\gamma\gamma$ + pile up
$[0.015 < \xi_{1,2} < 0.15, p_{T1,(2)} > 200, (100) \text{ GeV}]$	130.8	36.9 (373.9)	0.25	0.2	1.6	2968
$m_{\gamma\gamma} > 600 \text{ GeV}$	128.3	34.9(371.6)	0.20	0	0.2	1023
$[p_{\mathrm{T2}}/p_{\mathrm{T1}} > 0.95,$ $ \Delta \phi > \pi - 0.01]$	128.3	34.9(371.4)	0.19	0	0	80.2
$\sqrt{\xi_1\xi_2s} = m_{\gamma\gamma} \pm 3\%$	122.0	32.9 (350.2)	0.18	0	0	2.8
$ y_{\gamma\gamma} - y_{pp} < 0.03$	119.1	31.8 (338.5)	0.18	0	0	0

- No background after cuts for 300 fb⁻¹ without needing timing detector information
- Exclusivity cuts using proton tagging needed to suppress backgrounds (Without exclusivity cuts using CT-PPS: background of 80.2 for 300 fb⁻¹)

High lumi: Search for quartic $\gamma\gamma$ anomalous couplings:Results from effective theory

Luminosity	300 fb^{-1}	300 fb^{-1}	300 fb^{-1}	3000 fb^{-1}
pile-up (μ)	50	50	50	200
${f coupling}\ ({f GeV}^{-4})$	\geq 1 conv. γ 5 σ	\geq 1 conv. γ 95% CL	all γ 95% CL	all γ 95% CL
ζ_1 f.f. ζ_1 no f.f.	$ \frac{8 \cdot 10^{-14}}{2.5 \cdot 10^{-14}} $	$5 \cdot 10^{-14} \\ 1.5 \cdot 10^{-14}$	$3 \cdot 10^{-14}$ $9 \cdot 10^{-15}$	$2.5 \cdot 10^{-14} \\ 7 \cdot 10^{-15}$
ζ_2 f.f. ζ_2 no f.f.	$ \begin{array}{r} 2. \cdot 10^{-13} \\ 5 \cdot 10^{-14} \end{array} $	$ \frac{1. \cdot 10^{-13}}{4 \cdot 10^{-14}} $	$ \begin{array}{c} 6 \cdot 10^{-14} \\ 2 \cdot 10^{-14} \end{array} $	$ \frac{4.5 \cdot 10^{-14}}{1.5 \cdot 10^{-14}} $

- Unprecedented sensitivities at hadronic colliders: no limit exists presently on $\gamma\gamma\gamma\gamma$ anomalous couplings
- Reaches the values predicted by extra-dim or composite Higgs models
- Introducing form factors to avoid quadratical divergences of scattering amplitudes due to anomalous couplings in conventional way: $a \rightarrow \frac{a}{1-a}$ with $\Lambda_{autot} < 2$ TeV scale of new physics

 $a \rightarrow \frac{a}{(1+W\gamma\gamma/\Lambda_{cutoff})^2}$ with $\Lambda_{cutoff} \sim 2$ TeV, scale of new physics

- Full amplitude calculation leads to similar results: avoids using a form factor and parameters dependence of the results
- Conclusion: background free experiment

Conclusion

- Better constraints on gluon distribution in Pomeron, sensitivity to differences in quark distributions
- Jet gap jet events in diffraction: sensitivity to BFKL resummation effects, \sim 15-20% of DPE jets are jet gap jet events!
- $\gamma\gamma\gamma\gamma$ anomalous coupling studies
 - Exclusive process: photon-induced processes $pp \rightarrow p\gamma\gamma p$ (gluon exchanges suppressed at high masses):
 - Theoretical calculation in better control (QED processes with intact protons), not sensitive to the photon structure function
 - "Background-free" experiment and any observed event is signal
 - NB: Survival probablity in better control than in the QCD (gluon) case
- CT-PPS/AFP allows to probe BSM diphoton production in a model independent way: sensitivities to values predicted by extradim or composite Higgs models
- Look into other channels: WW, ZZ, $Z\gamma$ (specially interesting), jet jet

