Heavy quarks in deconfined quark-gluon matter

A. Andronic – GSI Darmstadt

- Intoduction / Motivation
- Open charm and bottom
- Quarkonia
- Summary and outlook

(focus on recent LHC results)

A.Andronic

 $q - \bar{q}$ pairs produced early in pQCD processes

- Open heavy-flavor hadrons are at high energies abundant probes of high density stages (thermalization and energy loss)
- Quarkonium formation is hindered with a screened potential Matsui & Satz, Phys. Lett. B 178 (1986) 178

"If high energy heavy-ion collisions lead to the formation of a hot quark-gluon-plasma, then color screening prevents $c\bar{c}$ binding in the deconfined interior of the interaction region."

no $q\bar{q}$ state if $r_{q\bar{q}}(T) > \lambda_D \simeq 1/(g(T)T)$ (Debye length in QGP) (quarkonia constitute a "thermometer" of QGP)

Main observables (vs. N_{part} and p_T):

- The nuclear modification factor, R_{AA} = "hot QCD" / "binary-scaled pp"
- Elliptic flow, v_2

2

D-meson production

A.Andronic

ALICE, JHEP 03 (2016) 081

large suppression of charmed mesons (first observed at RHIC with decay e)

D-meson nuclear modification

4

A.Andronic

ALICE, JHEP 03 (2016) 081

good description of data in theoretical models

D-meson nuclear modification

A.Andronic

CMS-PAS-HIN-15-005

5

expected parton / flavor ordering observed (not all details clear yet, though)

D mesons - fresh results at 5 TeV

A.Andronic

CMS-PAS-HIN-16-001

6

D-meson flow

7

A.Andronic

PRC 90 (2014) 034904

D-meson flow similar in magnitude with that of light quarks Theoretical description is good in some models, challenging for others

Charm transport coefficient

8

Prino, Rapp, arXiv:1603.00529

spread of model predictions large; efforts to reduce it are under way simultaneous description of R_{AA} and v_2 crucial ("unification" of inputs too)

A.Andronic

D-meson production vs. multiplicity

ALICE, JHEP 08 (2016) 1

A.Andronic

data better described with inclusion of a hydrodynamical stage in EPOS

similar trend observed in pp (ALICE, JHEP 09 (2015) 148)

...also for J/ ψ (p–Pb in prep.)

Beauty

10

A.Andronic

ALICE, JHEP 07 (2015) 51

uncertainties still quite large (improvements expected in Run 2)

Charmonium data at RHIC and the LHC

|11|

A.Andronic

 ${
m d}N_{ch}/{
m d}\eta\simarepsilon$ (>16 GeV/fm³, for ${
m d}N_{ch}/{
m d}\eta\simeq$ 1500)

- "suppression" at RHIC
- dramatically different at the LHC

Charmonium data at RHIC and the LHC

12

A.Andronic

- "suppression" at RHIC
- dramatically different at the LHC

Statistical Hadronization Model $N_{J/\psi} \sim (N_{c\bar{c}}^{dir})^2$

Predictions: AA et al., PLB 652 (2007) 259

What is so different at the LHC? (compared to RHIC) $\sigma_{c\bar{c}}$: ~10x, Volume: ~2.2x

 J/ψ is another observable (charm) for the phase boundary calculations are for T=156 MeV

\mathbf{J}/ψ production vs. p_T

13

A.Andronic

JHEP 06 (2015) 055

ALICE,

distinct differences between Pb–Pb and p–Pb, further support that low- $p_T J/\psi$ are from (re)generation (while at high- p_T outcome of charm energy loss)

(as $T \rightarrow T_{lim}$) is chemical freeze-out a determination of the phase boundary?

14

...Yes (at low μ_B)

Lattice QCD, $\mu_B = 0$: crossover T=145-165 MeV

Borsanyi et al., JHEP 1009 (2010) 073, JHEP 1208 (2012) 053 HotQCD, PRD 90 (2014) 094503, PRD 83, 014504 (2011)

...for entire μ_B range?

PBM, Stachel, Wetterich, PLB 596 (2004) 61
McLerran, Pisarski, NPA 796 (2007) 83
AA et al., NPA 837 (2010) 65
Floerchinger, Wetterich, NPA 890 (2012) 11

Are the larger T values at RHIC significant (physics)?

15

A.Andronic

...an important connection, but not decisive (yet)

(recall that only $\sigma_{c\bar{c}}$ is a new parameter in the statistical model, besides T, V)

...as transport models describe data equally well (and predict $R_{AA}(p_T)$ and v_2) assuming continuous dissociation and formation during the whole lifetime of QGP

is there a way to make the distinction?

 J/ψ production at 5 TeV

16

A.Andronic

ALICE, arXiv:1606.08197

 J/ψ production at 5 TeV

17

A.Andronic

ALICE, arXiv:1606.08197

The current (syst.) uncertainties prevent a firm conclusion, but trend generically predicted by (re)generation models (uncertainties determined by $\sigma_{c\bar{c}}$, 5% here)

STAR collab., arXiv:1607.07517

10²

10³

≬s_№ (GeV)

0

Theory: transport model (Tsinghua Univ.)

$\psi(2S)$ production at the LHC

19

A.Andronic@GSI.de

CMS, PRL 113 (2014) 262301

ALICE, JHEP 05 (2016) 179

at the SPS, the thermal value (SHM) was reached for central Pb–Pb ($p_T > 0$)

LHC: uncertainties large, no conclusion yet ...but expected in Run 2 (and Run 3)

The weight of the $\psi(2S)$ measurement

20

A.Andronic

Central Barrel: measurement possible only with upgrade (10 nb⁻¹) Muon Spectrometer: a first glimpse with baseline data (1 nb⁻¹), a real measurement only with upgraded ALICE ALICE, JPG 41 (2014) 087001

Bottomonium production at the LHC

 $\Upsilon(1S)$ supression interpreted as effect of feed-down from $\Upsilon(2S,3S)$, which were fully dissociated ("sequential suppression")

Bottomonium production at the LHC

22

Transport model predicts a small fraction of regenerated Υ

Bottomonium at the LHC

23

A.Andronic

Summary

24

 ${\sf A}.{\sf Andronic}$

 a wealth of data on hadrons with heavy quarks (mostly charm though) awaits a more precise model description and extraction of transport coefficients

interesting observations on multiplicity dependence in pp and p-Pb collisions

- (I think:) everybody agrees that we see (re)combination of charm quarks at the LHC
 - ...a new observable for the QCD phase boundary (...maybe similar at RHIC)
- interesting (sequential?) "disappearance" pattern in the bottom (𝔅) sector do bottom quarks also thermalize at the LHC? (at RHIC?) will 𝔅 add more weight to the phase boundary?

Backup slides

meson production D

ALICE, JHEP 03 (2016) 081

simultaneous description of LQ and charm challenging in some models

A.Andronic

40

Thermal fit at the LHC (Pb–Pb, 0-10%)

27

A.Andronic

 π , K^{\pm} , K^0 from charm included (0.7%, 2.9%, 3.1% for the best fit)

 $T = 156.5 \pm 1.5 \text{ MeV}, \quad \mu_B = 0.7 \pm 3.8 \text{ MeV}, \quad V_{\Delta y=1} = 5280 \pm 410 \text{ fm}^3$

Statistical hadronization of charm: method and inputs

28

A.Andronic

- Thermal model calculation (grand canonical) $T, \mu_B: \rightarrow n_X^{th}$
- $N_{c\overline{c}}^{dir} = \frac{1}{2}g_c V(\sum_i n_{D_i}^{th} + n_{\Lambda_i}^{th}) + g_c^2 V(\sum_i n_{\psi_i}^{th} + n_{\chi_i}^{th})$
- $N_{c\bar{c}} << 1 \rightarrow \underline{\text{Canonical}}$ (J.Cleymans, K.Redlich, E.Suhonen, Z. Phys. C51 (1991) 137):

$$N_{c\bar{c}}^{dir} = \frac{1}{2}g_c N_{oc}^{th} \frac{I_1(g_c N_{oc}^{th})}{I_0(g_c N_{oc}^{th})} + g_c^2 N_{c\bar{c}}^{th} \longrightarrow g_c \text{ (charm fugacity)}$$

Outcome: $N_D = g_c V n_D^{th} I_1 / I_0$ $N_{J/\psi} = g_c^2 V n_{J/\psi}^{th}$

The only new input parameter: $N_{c\bar{c}}^{dir}$ (from experiment or pQCd) Minimal volume for QGP: V_{OGP}^{min} =100 fm³

Charmonium in the statistical hadronization model

29 midrapidity forward rapidity ≜ ⊈ 1.2 R^A≜ Pb-Pb, $\sqrt{s_{_{NN}}} = 2.76 \text{ TeV}, 2.5 < y < 4.0$ Pb-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}, 2.5 < y < 4.0$ ALICE (±15% syst. unc.) ALICE (±8% syst. unc.) 0.8 0.8 0.6 0.6 0.4 0.4 Statistical Hadronization Model Statistical Hadronization Model 0.2 0.2 $d\sigma_{c\overline{c}}/dy = 0.322 \text{ mb}$ $d\sigma_{c\bar{c}}/dy = 0.206 \text{ mb}$ $d\sigma_{c\overline{c}}/dy \pm 0.045 \text{ mb}$ $d\sigma_{c\bar{c}}/dy \pm 0.070 \text{ mb}$ 0<u>`</u> 0 300 300 50 200 250 350 400 50 250 350 400 150 í೧ N_{part} $\mathsf{N}_{\mathsf{part}}$

the generic prediction by the model is confirmed by data (ALICE, arXiv:1606.08197) establishes charmonium as a powerful new observable of the phase boundary

A.Andronic

Charmonium in the statistical hadronization model

30

the model predicts absolute yields (R_{AA} is calculated with the pp reference as for data)

2.5 < y < 4.0

 $\sigma_{c\bar{c}}$ from pp, $\sqrt{s}=7$ TeV, LHCb, NPB 871 (2013) 1 $p_T < 8 \, GeV/c, 2.0 < y < 4.5$ $\sigma_{c\bar{c}} = 1419 \pm 12(stat) \pm 116(syst) \pm 65(frag) \,\mu b$ energy scaling via FONLL pQCD shadowing calculations (R.Vogt): 0.71 \pm 0.10

 $V_{\Delta y=1}$: 2.76 TeV: 4120 fm³; 5.02 TeV: 5150 fm³

Syst. uncert. of data apply fully-correlated to the model calculations

A.Andronic