Time Projection Chamber

이 효 상 실험장치부/고에너지핵과학팀 2014.12.08

LAMPS High Energy

✓ LAMPS High Energy

- heavy ion collisions
- to study the symmetry energy in the EoS of nuclear matter
- designed to cover wide acceptance range with high detection efficiency and accuracy of charged particles and neutrons

Time Projection Chamber (TPC)

- main detector for tracking of particles
- inside of Solenoid magnet
- complete information of charged particle trajectory

Working principle of Time Projection Chamber

LAMPS TPC

Prototype TPC

Concept of prototype TPC for LAMPS

• Optimized design & fabrication method : 1/2 size of real TPC (1/8 volume)

Honeycomb body for gas chamber

- PAD : Hexagon shape
 - Test with 5mm & 2.5mm
- GEM : Test with large size & specific shape
- Field cage : Uniform electric field by cu strip
- DAQ : r-COBO system
- Analysis : Development of reconstruction algorism

Gas Electron Multiplier (GEM)

Gas Electron Multiplier

Advantages of GEM

- 1. No wires to break
- 2. Prevent positive ions
- 3. Uniform electric field
- 4. High gain
- 5. Narrow signal

Garfield++ simulation

Triple GEM TPC gas gain diffusion simulation

Gas Electon Multiplier (GEM)

- Trapezoidal shape
- 50µm thickness
- 160x120 mm²
- 3 layers for each PAD

PAD

- Hexagonal shape : 5mm & 2.5mm
- 500 μm gap between two pads
- Multi-layer PCB board
- Trapezoidal (or Octant) shape PCB
- 4 layers PCB
- 16 pin SMD type connector

(1.27mm pitch)

Trapezoidal (or Octant) shape PCB

Field Cage

1MOhm resistor(0.1%)

- 35 um thick and 2 mm wide Cu strips
- 0.5 mm gap between neighboring strips
- Mirror strips on the back
- 1 M Ω resistors with 0.1% var.

• TPC body: G10 + Aramid honeycomb

Assembling

Inner Field Cage install

Outer Field Cage install

Prototype TPC : back

Prototype TPC

GEM test system

GEM test system

Single section test setup

- $R.C^2$ filter : Sallen & Key filter
- Gain-2 : inverting x2 Gain

Parameter	Value	Multiplicity	
Polarity of detector signal	Negative or Positive	Multiplicity signal	Analog OR of 64 discriminator outputs
channels number	64	Input dynamic range	5% or $17.5%$ of input channel input charge range
External Preamplifier	Yes, access to the filter or SCA input (external CSA)	I.N.L	<5%
*	Charge measurement	Threshold value	7-bit DAC
Input dynamia nango	120fC 240fC 1pC 10pC		(3-bit + polarity bit) common DAC + 4-bit DAC/channel
Coin	Adjustable per channel	Readout	
Output dynamia rango	2Vp p(differential)	Readout frequency	25MHz
	2 v p p (dimerential)	Channel Readout mode	Hit, selected or all
Resolution	<pre>< 270 < 850e- (Gain:120fC, Peaking Time:200ns, Cinput<30pF)</pre>	SCA Readout mode	1 to 512 cells
Sampling		Test	
Peaking time	50ns to 1μ s (16 values)	calibration	1 channel among 64 , 1 external test capacitor (2)
SCA time bin number	512 or $2x256$ cells	test	1 channel among 64, internal test capacitor
Sampling Frequency	1 MHz to 100 MHz	functional	1 to $64(68)$ channels, 1 internal test capacitor per channel
1 0 1		Counting rate	$< 1 \mathrm{kHz}$
		Power consumption	< 10 mW/channel 3.3V

🛱 hslee **P** Activities GEGetController Wed 16:57 GET Controller (on dag) File View Preferences Help File Edit View Search Terminal Help đΧ Control đΧ Information a. æ Log Headers --- Setting system tick to 1 milliseconds Test Identity --- Getting DHCP info... OK == Destroying data router server... Load Hw --- Boot server is 10.10.10.1 --> Adding as host: bootNode == Creating alarm logger with address 255.255.255.255:46012 Name hslee spy --- Target node is 10.10.10.10 --> Adding as host: mdaqNode (also aliased to vx) == Creating object adapter @ default -p 46012 Type: StdAcquisition == STARTED server on 255,255,255,255,46012 --- Mounting NFS "bootNode:/mnt/local/export/filesystem" on "/"... OK == Searching for tests in workspace ... --- Looking for specific startup script 'startup-000a350294e1.vxsh'... Not foun. Start == Found 13 test(s) Servers --- Looking for generic startup script 'startup.vxsh'... Found. == Created test 'hslee spv == Selected test 'hslee_spy --- Executing script 'startup.vxsh' ECC: 10.10.10.1:46002 == Selected test 'hslee_spy 10.10.10.1:46005 DAO: Reset ld < getHwServer.out value = 29630584 = 0x1c42078 10.10.10.10:46001 Target: 0 frame(s) 픚 Creating object adapter @ default -h 10.10.10.10 -p 46001 STARTED server on 10.10.10.10:46001 Paths Creating circular buffer for AsAd board no. 0 andAlone.xcfg Hardware Creating circular buffer for AsAd board no. 1 Creating circular buffer for AsAd board no. 2 Conditions: hslee_spy.xcfg 🛛 💽 Creating circular buffer for AsAd board no. 3 Enabling circular buffers with mask 0x1 Data: home/get/work Out of bounds write pointer! memStart=8000000 writePtr=0 memEnd=10000000 SyncedCircularBuffer: memStartPtr(20000010)=8000000 memEndPtr(20000014)=1000 **9** New 🖉 Edit 🔛 Open Creating object adapter @ default -h 10.10.10.10 -p 46004 STARTED server on 10.10.10.10:46004 MDag-10.10.10.10:/> File Edit View Search Terminal Help hslee3.xcfg hslee_internal.xcfg_orgipermitted by applicable law. localhost[2014/11/19 16:48]:~>get Last login: Wed Nov 19 16:45:44 2014 from 10.1.4.153 hslee_calibration.xcfg~ hslee multi.xcfg~ get@10.1.4.152's password: Linux dag 3.2.0-4-amd64 #1 SMP Debian 3.2.60-1+deb7u3 x86 64 hslee calibration.xcfg hslee multi.xcfg [get@dag ~]\$ cd work/ nslee external.xcfg~ hslee ref.xcfg [get@dag ~/work]\$ get nslee external.xcfg hslee.root getafm getEccClient getent getopt The programs included with the Debian GNU/Linux system are free software; [get@daq ~/work]\$ cp hslee getEccServer getfacl the exact distribution terms for each program are described in the getcifsacl gettext hslee_internal.xcfg nslee calibration.xcfg~ getconf getEccSoapClient getHwServer gettext.sh individual files in /usr/share/doc/*/copyright. hslee calibration.xcfg hslee_internal.xcfg_org_get-config-wizard_getEccSoapServer_getkeycodes getweb nslee_external.xcfg~ hslee_internal.xcfg_org[get@daq ~/work]\$ getE Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent hslee external.xcfg hslee_multi.xcfg~ getEccClient getEccServer getEccSoapClient getEccSoapServer permitted by applicable law. nslee_internal.xcfg~ hslee multi.xcfg [get@daq ~/work]\$ getEccServer Last login: Wed Nov 19 16:50:13 2014 from 10.1.4.153 [get@dag ~/work]\$ cp hslee ca == Starting Electronics Control Core server... [get@dag ~]\$ cd work/ nslee_calibration.xcfg~ hslee_calibration.xcfg == Creating object adapter @ default -p 46002 [get@daq ~/work]\$ dataRouter [get@daq ~/work]\$ cp hslee_calibration.xcfg hs -- Creating manager for configuration files in '/home/get/work' == Creating DataReceiver of type 'TCP' with endpoint '0.0.0.0:46005' hslee2.xcfg~ hslee_internal.xcfg~ -- START: (SM ECC) == Creating DataProcessorCore of type 'FrameStorage hslee_internal.xcfg hslee2.xcfq -- INIT: (SM_ECC)/(SM_ECC) -- Creating FrameStorage 0x7722c0 hslee_internal.xcfg_org -- TRANS: [#__INIT_#:(_OFF__)->(Idle)] hslee_internal.xcfg_org -- EXEC: {[*]:[onExit(__OFF__)]} hslee3.xcfg~ == Creating object adapter @ default -p 46003 hslee3.xcfg == STARTED server on 0.0.0.0:46003 hslee_calibration.xcfg~ hslee_multi.xcfg~ -- EXEC: {[*]:[# INIT #:(OFF)->(Idle)]} == Starting run processor... hslee_multi.xcfg Waiting for client connection hslee calibration.xcfq -- EXEC: {[*]:[onEntr(Idle)]} nslee external.xcfg~ hslee_ref.xcfg -- Creating manager for configuration files in '/home/get/work' nslee external.xcfg -- Creating alarm logger with address 0.0.0.0:46002 hslee.root get@daq ~/work]\$ cp hslee calibration.xcfg hslee == STARTED server on 0.0.0.0:46002 [get@daq ~/work]\$ [

AGET test

Parameter	Value			
Channel number	64			
Detector signal polarity	Negative or Positive	-		
External preamplifier	Access to the filter or SCA input			
Counting rate	< 1 kHz			
Power consumption	< 10 mW/channel at 3.3 V			
Charge measurement				
Input dynamic range	120 fC, 240 fC, 1 pC, 10 pC			
Gain	Adjustable per channel			
Output dynamic range	2 V p-p (differential)			
I. N. L.	< 2%			
Resolution	$<850~e^-$ (Gain: 120 fC, Peaking Time: 200 ns,	N		
	$C_{input} < 30 \text{ pF}$)	4		
	Sampling			
Peaking time	50 ns to 1 μ s (16 values)			
SCA time bin number	512 or 2×256 cells			
Sampling frequency	1 MHz to 100 MHz			
Multiplicity				
Multiplicity signal	Analog \ll OR \gg of 64 discriminator outputs			
Input dynamic range	5% of input charge range			
I. N. L.	< 5%			
Threshold value	4-bit DAC/channel + $(3$ -bit + polarity bit)			
	common DAC			
Readout				
Readout frequency	25 MHz			
Readout mode	Hit, specific or 64			
SCA readout mode	1 to 512 cells			
Test				
Calibration	1 channel among 61, 1 external test capacitor			
Test	1 channel among 61, 1 internal test capacitor			
	(1 among 4)			
Functional	1 to $64(68)$ channels, 1 internal test			
	capacitor/channel			

Polarity - negative or positive

Gain : 240fC

Input : 120fC

Dynamic range - 120fc, 240fc, 1pc, 10pc

<u>AGET test</u>

Peaking time - 50s to 1us (16 values)

GEM

Test list

- Leakage Current
- Cosmic-ray muon
- Fe55 source

Geallageoblarent test before/after cleaning

<u>GEM test - Test setup</u>

Test setup

Signal from PAD

엉

200

400

600

800

1000

1200 1400 Charge (fC)

of collected electron on PAD : from MIP peak (charge)

of produced electron : from garfield++ (# of electron x (1.602x10E-19C)) <u>http://garfieldpp.web.cern.ch/garfieldpp/examples/heed/</u> (Calculation of charged particle ionization using Heed)

.

Summary

Time Projection Chamber (TPC)

- main detector for tracking of particles
- complete information of charged particle trajectory
- Target : 30cm away from the center
- Detection range : -0.7(127°) ~ 1.6(24°)
- Drift length : 60cm (x2)
- Cathode Membrane
- Amplified by Gas Electron Multiplier (GEM)
- Both side readout PAD

• Concept of prototype TPC for LAMPS

- Optimized design & fabrication method : 1/2 size of real TPC (1/8 volume), Honeycomb body for gas chamber
- PAD : Hexagon shape with 5mm & 2.5mm
- GEM : Test with large size & specific shape
- Field cage : Uniform electric field by Cu strip
- DAQ : r-CoBo system
- Analysis : Development of reconstruction algorism

Current status

- GET system study
- Single section GEM & PAD test with source & cosmic-ray
- long time test

Backup

<u>GEM test - Gain</u>

GEM? Wire?

DAQ

Parameter	Value			
Channel number	64			
Detector signal polarity	Negative or Positive			
External preamplifier	Access to the filter or SCA input			
Counting rate	< 1 kHz			
Power consumption	< 10 mW/channel at 3.3 V			
Charge measurement				
Input dynamic range	120 fC, 240 fC, 1 pC, 10 pC			
Gain	Adjustable per channel			
Output dynamic range	2 V p-p (differential)			
I. N. L.	< 2%			
Resolution	$<850~{\rm e^-}$ (Gain: 120 fC, Peaking Time: 200 ns,			
	$C_{input} < 30 \text{ pF})$			
Sampling				
Peaking time	50 ns to 1 μ s (16 values)			
SCA time bin number	512 or 2×256 cells			
Sampling frequency	$1~\mathrm{MHz}$ to $100~\mathrm{MHz}$			
Multiplicity				
Multiplicity signal	Analog $\ll {\rm OR} \gg {\rm of}$ 64 discriminator outputs			
Input dynamic range	5% of input charge range			
I. N. L.	< 5%			
Threshold value	4-bit DAC/channel + $(3$ -bit + polarity bit)			
	common DAC			
Readout				
Readout frequency	25 MHz			
Readout mode	Hit, specific or 64			
SCA readout mode	1 to 512 cells			
Test				
Calibration	1 channel among 61, 1 external test capacitor			
Test	1 channel among 61, 1 internal test capacitor			
	(1 among 4)			
Functional	1 to 64(68) channels, 1 internal test			
	capacitor/channel			

- 1 ASAD : 4GET \rightarrow 256ch
- 1 COBO : $4ASAD \rightarrow 1024ch$
- 1 uTCA : 10COBO → 10240ch
- 5mm size PAD
 : ~11000ch x 2 → 2~3 uTCA
- 2.5mm size PAD
 - : ~44000ch x 2 → 8~9 uTCA

Field Cage

Prototype TPC for LAMPS

Field strip sheet with resistor pattern

Field strip sheet without resistor pattern

resistor pattern

electrode

Field strip : outer (with 6 sheets)

Field strip : inner (with 2 sheets)

Cathode

Prototype TPC for LAMPS

Cathode

Cathode holder

Dummy cathode

Assembling

Prototype TPC for LAMPS

TPC bottom frame : Al

TPC bottom with PAD

PAD frame (G10) & HV connector

TPC bottom back

Assembling

Prototype TPC for LAMPS

G10 frame for Field Cage

Field Cage with G10 sheet

Field Cage with field strip

Field Cage with honeycomb

Inner Field Cage

