

D meson production in heavy-ion collisions with CMS

Hyunchul Kim (Chonnam National University) on behalf of CMS heavy-ion group

XLVI International Symposium on Multiparticle Dynamics (ISMD2016) Aug. 29th – Sep. 2nd. 2016 Seogwipo KAL Hotel, Jeju Island, Republic of Korea

Motivation

- Heavy quarks (such as charm and bottom) are produced at initial stage of the collisions
- Go through the hot and dense matter, can be used as probe of Quark Gluon Plasma
- Expected flavor dependent energy loss by
 - Casimir factor
 - Dead cone effect : radiation
 Suppressed at small angles
 $\Delta E_{gluon} > \Delta E_{u,d,s} > \Delta E_{charm} > \Delta E_{bottom}$

Analysis procedure

□ Decay channel : $D^0 \rightarrow K^- \pi^+$

- Invariant mass : 1.865 GeV
- Branching fraction = $3.88 \pm 0.05\%$
- \circ c τ (D⁰) = 122.9 μ m

□ No PID (Particle identification)

- $\circ~$ For one charged track pair, two mass assignment are applied (K⁺ $\pi^{\text{-}}$ and $\pi^{\text{+}}$ K⁻)
- Use opposite-signed charged track pair

□ Tracks with $|\eta| < 1.1$ and $p_T > 1$ GeV/c

Signal extraction

Fitting functions

- Signal : double Gaussian
- Misidentified D⁰ by swapped K- π mass : single Gaussian
- Combinatorial background
 - 2.76 TeV : exponential
 - 5.02 TeV : third order polynomial

Nuclear modification factor $(R_{\Delta\Delta})$

$PbPb\sqrt{s_{NN}} = 2.76 \text{ TeV}$ Theory Prediction Prompt D⁰ R^{*}_{AA} lyl < 2.0, Cent. 0-10% lyl < 1.0, Cent. 0-10% WHDG Syst. PbPb data T-Matrix LANL no eloss Err. pp reference LANL small eloss Syst. T_{AA}+N_{MB}+BR BAMPS DUKE CUJET3.0 Filled markers: data-extrapolated reference Open markers: FONLL reference 30 35 40 10 15 20 25 p_ (GeV/c) 25.8 pb⁻¹ (5.02 TeV pp) + 404 µb⁻¹ (5.02 TeV PbPb) CMS Preliminarv M. Djordjevic CUJÉT3.0 D S. Cao et al. PHSD w/ shadowing T_{AA} and lumi. PHSD w/o shadowing I.Vitev (g=1.8-2.0) uncertainty Centrality 0-10% |v| < 1 10^{2} 10 p_ (GeV/c)

pp reference

- 2.76 TeV : rescaled ALICE 7 TeV pp data by 2.76 TeV pp FONLL calulation ($p_T < 16$ GeV/c) + 2.76 TeV FONLL calculation ($p_T > 16$ GeV/c)
- 5.02 TeV : 5.02 pp TeV data 0 (agree with FONLL calculation within uncertainties)

Cover wider p_{T} range for D^{0} meson

- 2.76 TeV : 2.5 40 GeV/c
- 5.02 TeV : 2 100 GeV/c

Similar trends between 2.76 and 5.02 TeV measurement

- $\circ~R_{AA}$ going down for $p_T < 10$ GeV/c and going up
- No significant dependence on centrality within uncertainties
- Some model describe the result well
- Consistent with charged particle R_{AA}

Summary and outlook

 Hint of order of energy loss

 Stay tuned to coming results at HardProbes in Wuhan!

Kisoo Lee (Korea University) will show the B meson analysis results in pPb collisions

Reference (https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN) CMS-PAS-HIN-15-005 : Nuclear Modification Factor of prompt D⁰ in PbPb Collisions at $\sqrt{(s_{NN})}$ = 2.76 TeV CMS-PAS-HIN-16-001 : D⁰ meson nuclear modification factor in PbPb collisions at $\sqrt{(s_{NN})}$ = 5.02 TeV

Thank you for your attention 경청해주셔서 고맙습니다

