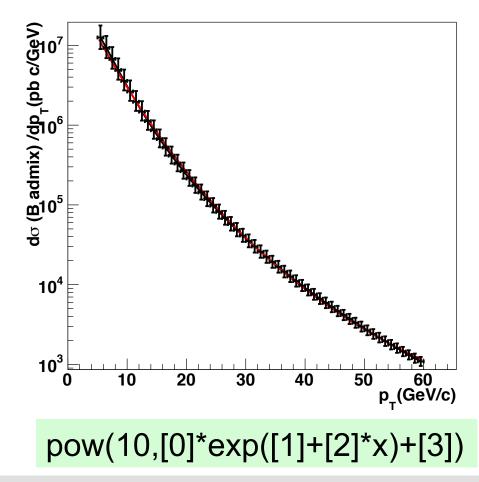


Update on the study about the data-driven pp reference

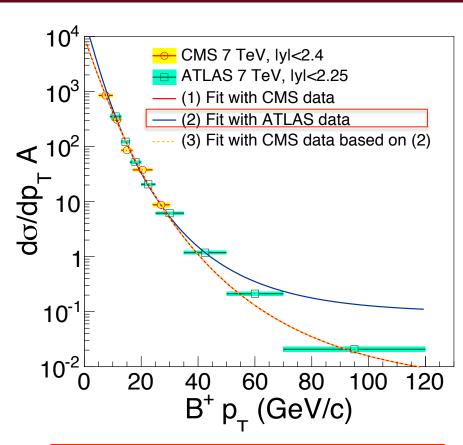
Hyunchul Kim for B analyzers

Bana Report - HF working meeting (Jan. 22th. 2015)

Summary of the study procesure

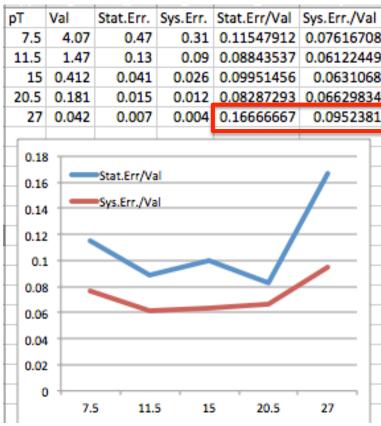

- Purpose : get 5 TeV pp reference with pPb binning
- Our present resources
 - 7 TeV FONLL with fine binning
 - 5 TeV FONLL with fine binning
 - 7 TeV CMS pp data with pp binning (and another measurements)
- Strategy (improved after HF meeting)
 - Get the working fit function from 7 TeV FONLL with fine binning
 - With that function, fit on 7 TeV CMS + ATLAS data with pp binning
 - With fitting function, get the 7 TeV CMS pp data with our binning
 - Calculate the ratio of FONLL expectation (5 TeV vs. 7 TeV) with our binning
 - Get the pp data-driven reference (pp+FONLL)
 - Compare the pp data-driven reference (pp+FONLL) and pure FONLL calculation

 1. Get the working fit function from 7 TeV FONLL with fine binning

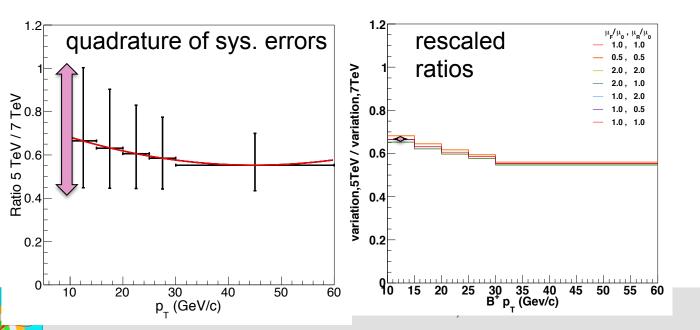


Bana Report - HF working meeting (Jan. 22th. 2015)

- 2. With that function, fit on 7 TeV CMS and ATLAS pp data with their binning
 - Slightly different y range
 - No significant correction factor between two results
 - Fit with three options over (0,120) GeV, No limitation of fitting parameters
 - (1) Fit with CMS results
 - (2) Fit with ATLAS results
 - Fitting function only with CMS data is almost overlapped with that with ATLAS (p_T : 9~30)
 - At higher p_{T} region, there is visible gap between two functions
 - Now, try to get the weighted center
 - CMS points is not changed
 - ATLAS points might be slightly changed

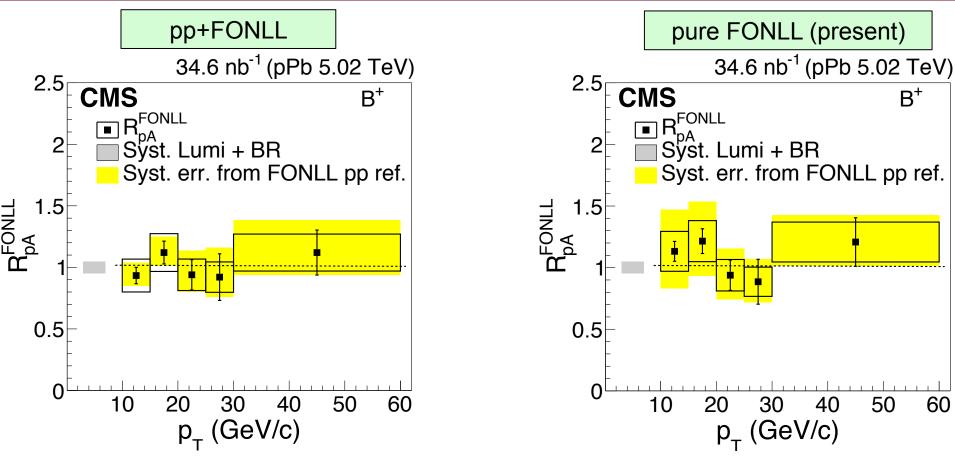


With new fitting function(2), RpA might be decreased so more close to one than in old case

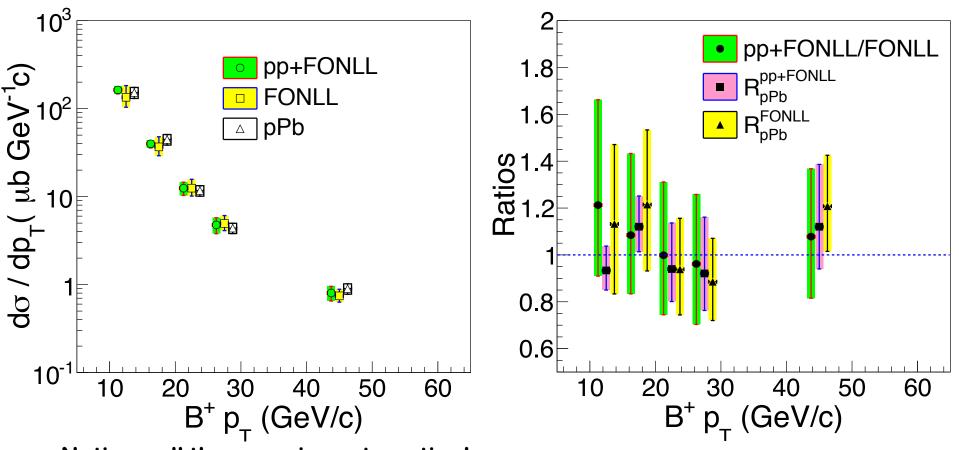

- 3. With fitting function, get the 7 TeV CMS pp data with our binning
 - Integral the fitting function over our analysis binning, such as (10,15), (15,20), (20,25), (25,30), (30,60)
 - Treat the statistical and systematical error
 - No visible trends in published data
 - Consider the pp and pPb analysis binning, estimate the each error
 - For highest p_T bin, conservatively select maximum values like sqrt(0.167²+0.095²)

- 4. Calculate the ratio of FONLL expectation (5 TeV vs. 7 TeV) with our binning and related systematics
 - Issue : how to consider the systematical error from FONLL expectation?
 - Following the former ALICE study, basically systematical uncertainties is independent on the beam energy

- Get the envelope from ratio of FONLL expectation varying the parameters
- Choose the width of envelope as the systematical uncertainties
- Dramatically reduced sys. errors

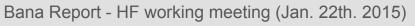

• 5. Get the pp data-driven reference (pp+FONLL)

- Central value : estimated pp 7 TeV with our binning * ratio of FONLL with our binning (5TeV / 7TeV)
- Systematical and statistical error : estimated pp 7 TeV error with our binning * ratio of FONLL with our binning (5TeV / 7TeV)
 - Main source of systematical uncertainties of pp+FONLL

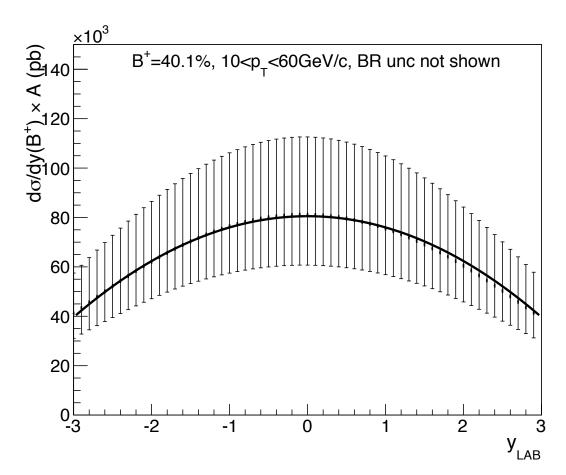

Step 6 : Results with pp references

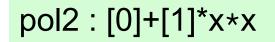
- With pp+FONLL,
 - In all bins R_{pA} would be more close to 1 than with pure FONLL
 - In lower p_T region, systematical error from data driven reference is much decreased than that from only FONLL reference

Step 6 : Results with pp references



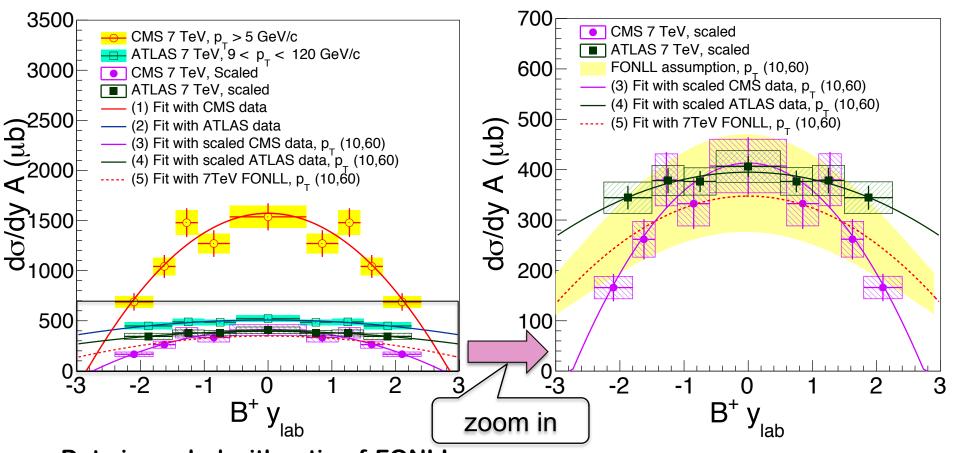
- Notice : all the error is systematical error
 - Left : pPb only includes systematical error
 - Right : errors from (pp data+FONLL or FONLL itself)
- Compare central value and systematical error
 - Confirm trends commented at previous slide





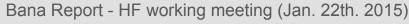
y dependence

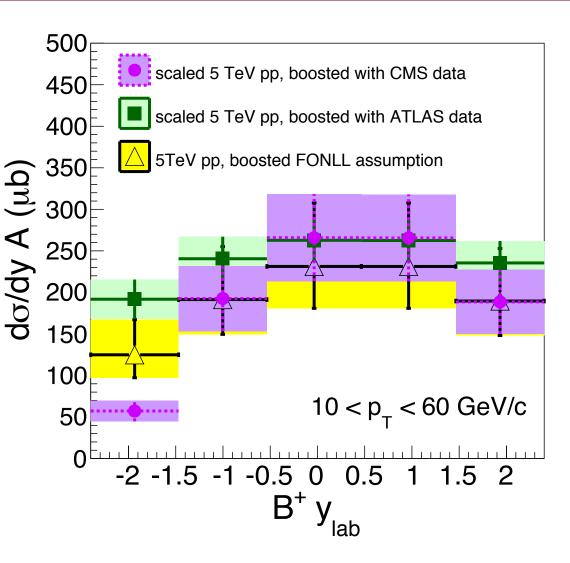
 1. Get the working fit function from 7 TeV FONLL with fine binning



11

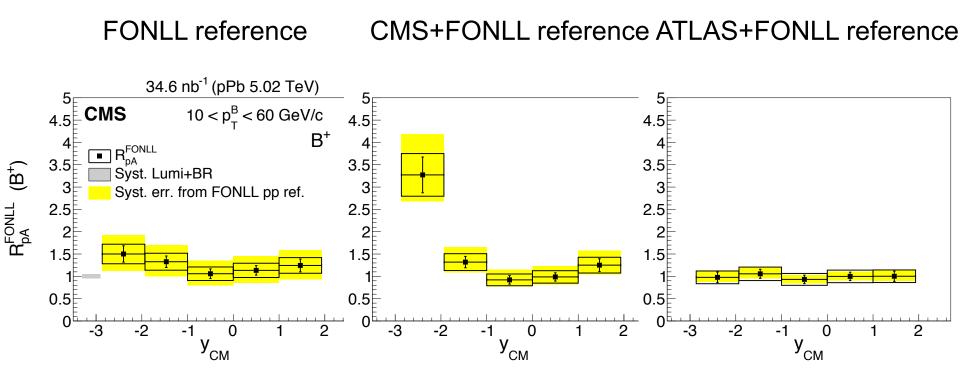
Bana Report - HF working meeting (Jan. 22th. 2015)


Step 2 & 3


- Data is scaled with ratio of FONLL
 - CMS*(10,60)/(5,120), ALTAS*(10,60)/(9,120)
- In mid-rapidity scaled CMS and ATLAS data are duplicated
- Central value of FONLL expectation is underestimated in mid-rapidity than in data

12

At forward region, scaled ATLAS>FONLL>scaled CMS data


Step 4 & 5

- At backward bin, ATLAS>FONLL>CMS , difficult to believe this bin
- At 2,5 bins, ATLAS>CMS~FONLL
 , but within FONLL
 uncertainties
 consistent
- At 3,4 bins, CMS~ATLAS>FONLL , maybe FONLL might be underestimated, but within uncertainties consistent

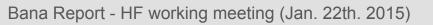
Different R_{pA}

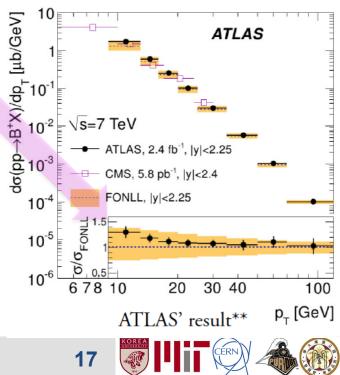
- At $|y_{CM}| < 1$, all results looks similar
- At backward y_{CM} bin, all R_{pA} varied so much
- For public, only show |y_{CM}|<1.93?

Question and plan for near days

Question

– How can we treat the result with "pp+FONLL" for main results?


- Next step
 - Same study for B^0 , B_s
 - Try to get weighted points (especially with ATLAS points)



Reminder : comments about pp reference

- Now : use FONLL expectation at 5 TeV collision
- Julia's comments
 - We have published 7 TeV pp CMS and ATLAS measurements
 - The theoretical calculations at 7 TeV have been shown to deviate from the data by factors up to 1.5, and this is rapidity and p_T dependent
 - The theoretical uncertainties are so large, that they prevent a meaningful statement about R_{pPb} to be made vs p_T or rapidity.
- Need to consider a data-driven method to determine the pp reference at 5.02 TeV moving from present model-based pp reference (FONLL assumption)
- Detailed approach
 - Use the published 7 TeV data
 - also adding low energy data (CDF, D0, UA1)
 - Then FONLL scaling to 5.02 TeV
 - Adding 2.76 TeV pp data is also a possibility

Rapidity conversion in between lab and CM frame

General

- Proton going direction have plus rapidity in CM frame
- Merge bins with same rapidity in CM frame(same color in tables)
- 1st run

– proto	on going t	o minus e	ta $y_{_C}$	$_{M} = -$	$-y_{lab}$ –	-0.465	
			0.405		14 470		

yLAB	-2.4	-1.465	-0.465	+0.535	+1.470	+2.4	
уСМ	1.935	1.0	0.0	-1.0	-1.935	-2.865	
proton going direction							

• 2nd run

- proton going to plus eta $~~y_{\scriptscriptstyle CM} = y_{\scriptscriptstyle lab} - 0.465$

yLAB	-2.4	-1.470	-0.535	+0.465	+1.465	+2.4
уСМ	-2.865	-1.935	-1.0	0.0	1.0	1.935
proton going direction						

Reminder : Status of HIN-14-004

- Paper draft and AN submitted on CADI
 - AN :

http://cms.cern.ch/iCMS/jsp/openfile.jsp? tp=draft&files=AN2013_322_v10.pdf

- paper draft :

http://cms.cern.ch/iCMS/analysisadmin/get? analysis=HIN-14-004-paper-v0.pdf

Analyzers would like to ask you to look at the draft and any comments about that

