Low-energy exclusive $e^+e^- \rightarrow hadrons$ cross sections and g-2 of the muon

J. William Gary U. California, Riverside

on behalf of the Babar Collaboration

ISMD, Jeju Island, South Korea 29 August – 02 September 2016

• Gyromagnetic ratio g: $\vec{\mu} = g \frac{e}{2mc} \vec{s}$

$$\overleftarrow{\mu}$$

- → The relationship between angular P momentum L (or s) and magnetic moment μ
- Dirac (tree-level) result for a charged lepton I:
 g_I = 2 (exactly)
- Radiative corrections alter the prediction: g_l = 2 (1 + a_l), introducing sensitivity to new physics through loops
- The "anomalous" moment $a_l = \frac{g_l 2}{2}$

The muon anomaly a_{μ} is much more sensitive to virtual heavy particle production in loops than the electron anomaly a_e : the relative virtual terms scale like $(m_u/m_e)^2 \approx 43,000$

In the standard model, $a_{\mu} = a_{\mu}^{QED} + a_{\mu}^{EW} + a_{\mu}^{hadronic}$

Gnendiger et al., PRD88 (2013) 053005

$$a_{\mu}^{hadronic} = a_{\mu}^{had,LO-VP} + a_{\mu}^{had,NLO-VP} + a_{\mu}^{had,LbLS}$$

Leading-order hadronic vacuum polarization

 $a_{\mu}^{had,LO-VP} = 6923 \pm 42 \times 10^{-11}$ Davier et al., EPJC71 (2011) 1515 $[6949 \pm 43 \times 10^{-11}$: Hagiwara et al., J. Phys. G38 (2011) 085003]

Higher-order hadronic vacuum polarization

$$a_{\mu}^{had,HO-VP} = -98.4 \pm 0.7 \times 10^{-11}$$

Hagiwara et al., J. Phys. G38 (2011) 085003

Light-by-light scattering

$$a_{\mu}^{had,LbLS} = 105 \pm 26$$

Prades et al., arXiv:0901.0306 (2009)

Diagrams from Jegerlehner and Nyffeler, Phys. Rept. 477 (2009) 1

Summary: individual SM contributions:

a_{μ}^{QED}	116584718.951 ± 0.080
a_{μ}^{EW}	153.6 ± 1.0
${a_\mu}^{had,LO-VP}$	6923 ± 42
$a_{\mu}^{had,HO-VP}$	-98.4 ± 0.7
$\mathbf{a}_{\mu}^{\text{had,LbLs}}$	105 ± 26

all in units of 10⁻¹¹

Total SM prediction compared to measurement

$a_{\mu}^{\text{total-SM}}$	116591802 ± 49
$a_{\mu}^{\text{BNL-E821}}$	116592089 ± 63
Data - SM	287 ± 80

 ~ 3.5 σ difference between data and SM prediction

 Uncertainty in the SM prediction dominated by LO-VP term

Davier et al., EPJC71 (2011) 1515

LO hadronic vacuum polarization term a, had, LO-VP

- Energy scale too low for perturbative calculations
- Lattice calculations not yet sufficiently precise [M Della Morte et al., JHEP 1203 (2012) 055]
- The most precise result for $a_{\mu}^{had,LO-VP}$ obtained from low-energy ٠ $e^+e^- \rightarrow hadrons$ data and an integral over a dispersion relation

had

see Phys. Rep. 477 (2009) 1

 $a_{\mu}^{had,LO-VP} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{m^2}^{\infty} \frac{K(s)R_{had}}{s^2} ds \qquad R_{had} = \frac{\sigma(e^+e^- \to hadrons)}{\sigma(e^+e^- \to \mu^+\mu^-)}$ Š had

 $e^+e^- \rightarrow hadrons production$ through a photon coupling

 $1/s^2$ term \rightarrow low-energy contributions dominate

K(s) = kinematic factor

- Need precise measurements of R_{had} at low \sqrt{s}
- Use sum of exclusive channels for E < 2 GeV: background to inclusive channel from $e^+e^- \rightarrow e^+e^-$ and $e^+e^- \rightarrow \mu^+\mu^-$ events very large & inclusive detection efficiency not precise below 2 GeV [generic MC (Jetset) doesn't work]
- Perturbative calculation or inclusive $\sigma(e^+e^- \rightarrow hadrons)$ data used for E > 2 GeV

LO hadronic vacuum polarization term $a_{\mu}^{had,LO-VP}$

- Contribution of the $\pi^+\pi^-$ state to the dispersion integral: 75%
- The 3π , 4π , and KK channels the next most important
- Final states with kaons, e.g., $KK\pi$, $KK\pi\pi$, important above the ϕ mass

Relative contributions of different channels to the <u>uncertainty</u> in a_u^{had,LO-VP}

- "Isospin" refers to processes with unmeasured cross sections estimated from isospin relations: largest contributions are KK π and KK $\pi\pi$
- * New results (preliminary) shown here on $\pi^+\pi^-\pi^0\pi^0$ and for KK π , KK $\pi\pi$ states
- Recently published Babar results on K^+K^- , K_SK_L not yet accounted for in $a_{\mu}^{had,LO-VP}$

Partial list of experiments: R_{had} at $\sqrt{s} < 2 \text{ GeV}$

Experiment	Collider	Location	Beam energy
KLOE	DAφNE	Frascati	1.02 GeV
DM1. DM2	DCI	Orsay	1.35-2.4 GeV
CMD2, SND	VEPP-2M	Novosibirsk	0.4-1.4 GeV
CMD3, SND	VEPP-2000	Novosibirsk	0.3-2 GeV
BESIII	BEPC-II	IHEP, Beijing	2-4.6 GeV
CLEO-c	CESR	Cornell	3.67-4.17 GeV
Babar	PEP-II	SLAC	10.6 GeV

The Babar experiment

- PEP-II rings: asymmetric e⁺e⁻ collider @ **SLAC** 9 GeV e⁻ and 3.1 GeV e⁺
- Collected data 1999-2008; data analysis still active (~10 new papers in 2016)

The Babar ISR $e^+e^- \rightarrow hadrons program$

A long-term project nearing completion

Published results on low-energy exclusive cross sections:

米 π⁺π⁻ (232 fb⁻¹)	PRL 103 (2009) 231801
≭ π⁺π⁻π⁰ (89 fb⁻¹)	PRD 70 (2004) 072004
2(π⁺π⁻)	PRD 85 (2012) 112009
K ⁺ K ⁻ π ⁺ π ⁻ , K ⁺ K ⁻ π ⁰ π ⁰ , K ⁺ K ⁻ K ⁺ K ⁻	PRD 86 (2012) 012008
2(π⁺π⁻)π⁰, 2(π⁺π⁻)η, Κ⁺Κ⁻π⁺π⁻π⁰, К⁺К⁻π⁺π⁻η	PRD 76 (2007) 092005
3(π ⁺ π ⁻), 2(π ⁺ π ⁻ π ⁰), K ⁺ K ⁻ 2(π ⁺ π ⁻)	PRD 73 (2006) 052003
K⁺K⁻η, K⁺K⁻π⁰, K₅K⁺π⁻	PRD 77 (2008) 092002
рр	PRD 87 (2013) 092005 PRD 88 (2013) 072009
$\Lambda\Lambda,\Lambda\Sigma^0,\Sigma^0\Sigma^0$	PRD 76 (2007) 092006
K⁺K⁻, tagged ISR	PRD 88 (2013) 032013
K⁺K⁻, untagged ISR	PRD 92 (2015) 072008
K _s K _L , K _s K _{s/L} π ⁺ π ⁻ , K _s K _s K ⁺ K ⁻	PRD 89 (2014) 092002

Essentially the complete set of significant exclusive channels

* The $\pi^+\pi^-$ and $\pi^+\pi^-\pi^0$ studies being updated to include the full ~490 fb⁻¹ Babar data sample

Bill Gary, ISMD 2016, August 30, 2016

Current status of published results: $e^+e^- \rightarrow \pi^+\pi^-$

Most precise published $e^+e^- \rightarrow \pi^+\pi^-$ measurements: Babar (2009), KLOE (2009, 2011, 2013), and BESIII (2016)

- Each of the three experiments claims ~1% precision in the measurement of the π⁺π⁻ cross section.
- However, the Babar and Kloe results differ by 3-6%, with BESIII in between
- May need additional studies from BESIII, CMD3, and Babar

The Babar ISR $e^+e^- \rightarrow hadrons program$

Babar tagged ISR analyses

- e⁺e⁻ collisions at ~10.6 GeV
- ≥ 1 photon identified in the detector with E* > 3 GeV (* = CM frame)
- ISR photon γ_{ISR} = photon with highest E*
- Boost of the recoil system provides good efficiency for soft particles, allowing measurements of cross sections down to the production threshold

Generic Babar ISR event

- Event acceptance larger for the ISR method than for the energy scan method since event is pointed into the detector and not down the beam pipe
- Can access a wide range of energy in a single experiment: from threshold to ~5 GeV

One of the least known cross sections important for g-2 of the muon

- Exactly 2 tracks, p > 100 MeV, opposite charge, $d_0 < 1.5$ cm, $z_0 < 2.5$ cm
- ISR photon candidate: highest energy photon, with E > 3 GeV in CM frame
- ≥ 4 other photons, E > 50 MeV
- Perform kinematic fit to the $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\gamma$ hypothesis, constraining two 2γ combinations to the π^0 mass
- Select the overall combination of four photons yielding the smallest $\chi_{4\pi\gamma}^2$, requiring $\chi_{4\pi\gamma}^2 < 30$
- Difference between the $\chi_{4\pi\gamma}^{2}$ distributions of data and signal MC due to background in the former

- ISR background from $\pi^+\pi^-\pi^0\gamma$, $\pi^+\pi^-\pi^0\gamma\gamma$, $\pi^+\pi^-2\gamma\gamma$ suppressed by rejecting events with kinematic fits consistent with those hypotheses; e.g., require $\chi_{3\pi\gamma}^2 > 25$
- Largest remaining background is from non-ISR qq continuum events, arising from the misidentification of a photon from π^0 decay as an ISR photon
- Subtract $q\overline{q}$ background using simulation normalized to the π^0 peak from $\gamma_{ISR}\gamma$ combinations:
 - γ_{ISR} = the selected ISR photon

- Background from residual ISR processes (K_sK⁺π⁻γ, K⁺K⁻π⁰π⁰γ, π⁺π⁻π⁰γ): use the existing measurements to correct simulation (rate and shape) & subtract
- Largest ISR background is from $\pi^+\pi^-3\pi^0\gamma$ events
 - Cross section not well measured; perform new measurement to obtain reliable background estimate
 - Perform kinematic fit under the $\pi^+\pi^-3\pi^0\gamma$ hypothesis; require $\chi_{5\pi\gamma}^2 < 25$
 - Subtract $q\overline{q}$ background using simulation normalized using π^0 peak in $\gamma_{\text{ISR}}\gamma$
 - Subtract residual ISR background using data sideband in $\chi_{5\pi\gamma}{}^2$
 - Determine relative contributions of $\omega \pi^0 \pi^0 \gamma$ $(\omega \rightarrow \pi^+ \pi^- \pi^0)$, $\eta \pi^+ \pi^- (\eta \rightarrow 3\pi^0)$, and nonresonant channels; reweight simulation accordingly to evaluate efficiency

• Cross section corrected for detector acceptance and resolution [AfkQed & Phokhara MC]

$$\frac{\mathrm{d}\sigma_{2\pi 2\pi^{0}\gamma}(M)}{\mathrm{d}M} = \frac{\mathrm{d}N_{2\pi 2\pi^{0}\gamma}(M)}{\mathrm{d}M} \cdot \frac{1}{\epsilon(M)\mathcal{L}_{\mathrm{tot}}(1+\delta)}$$
$$\delta = \text{radiative correction, including FSR}$$

• Interpret in terms of nonradiative cross section $\sigma_{\pi^+\pi^-2\pi^0}$

$$\frac{\mathrm{d}\sigma_{\pi^+\pi^-2\pi^0\gamma}(M)}{\mathrm{d}M} = \frac{2M}{s} \cdot W(s, x, C) \cdot \sigma_{\pi^+\pi^-2\pi^0}(M)$$

W(s, x, C) = radiator function, the probability for the initial e⁺ or e⁻ to radiate a photon within the CM polar angle range $|\cos(\theta_{\gamma})| < C$, thus lowering the effective annihilation energy from Vs to M

 $x = 2 E_{\gamma}/Vs$; E_{γ} measured in CM

- Babar results far more precise & covers wider energy range
- Contribution to a_μ for 1.02<E_{CM}<1.8 GeV measured to be [175 ± 6 (stat+syst)] x 10⁻¹¹ (3.4% precision)
- Previous result, including the preliminary Babar data from 2007, is [180 ± 12 (stat+syst)] x 10⁻¹¹
 (6.7% precision)

(II) First measurements of the $e^+e^- \rightarrow K_S K^+\pi^-\pi^0$ and $K_S K^+\pi^-\eta$ cross sections

- ISR photon = highest energy γ with CM E_{γ} > 3 GeV
- At least one $K_s \rightarrow \pi^+\pi^-$ candidate consistent with interaction point
- At least two additional photons, with $m_{\gamma\gamma}$ consistent with m_{π^0} or m_{η}
- Two oppositely charged tracks, one identified as a pion & one as a kaon
- Background from non-ISR q \overline{q} events (primarily $e^+e^- \rightarrow K_S K^+\pi^-\pi^0\pi^0$ and $K_S K^+\pi^-\eta\pi^0$) evaluated from simulation normalized to data using the $\gamma_{ISR}\gamma \pi^0$ peak
- Background from ISR e⁺e⁻ → K_sK⁺π⁻ and K_sK⁺π⁻π⁰π⁰ or K_sK⁺π⁻ηπ⁰ [one more or one less π⁰] events evaluated from data sidebands

(II) First measurements of the $e^+e^- \rightarrow K_s K^+\pi^-\pi^0$ and $K_s K^+\pi^-\eta$ cross sections

(III) First measurements of the $e^+e^- \rightarrow K_S K_L \pi^0$, $K_S K_L \eta$, and $K_S K_L \pi^0 \pi^0$ cross section

- ISR photon = highest energy γ with CM E_{γ} > 3 GeV
- At least one $K_s \rightarrow \pi^+\pi^-$ candidate consistent with interaction point
- At least two additional photons, with $m_{\gamma\gamma}$ consistent with m_{π^0} or m_{η}
- K_L candidates identified as isolated calorimeter clusters with E > 0.2 GeV; detection efficiency as a function of the K_L energy and direction measured in data from $e^+e^- \rightarrow \phi\gamma \rightarrow K_S K_L \gamma$ events
- Perform fit to all the signal processes ; retain $K_{s}K_{L}\pi^{0}$, $K_{s}K_{L}\eta$, and $K_{s}K_{L}\pi^{0}\pi^{0}$ candiate combinations with the lowest respective χ^{2}
- Background suppression and subtraction similar to that described for studies described previously

(III) First measurements of the $e^+e^- \rightarrow K_s K_L \pi^0$, $K_s K_L \eta$, and $K_s K_L \pi^0 \pi^0$ cross section

First observations (all preliminary) of

$$B_{J/\varphi \to K_S K_L \pi^0} = (2.06 \pm 0.24 \pm 0.10) \times 10^{-3}$$

$$B_{J/\varphi \to K_S K_L \eta} = (1.45 \pm 0.32 \pm 0.08) \times 10^{-3}$$

$$B_{J/\varphi \to K_S K_L \pi^0 \pi^0} = (1.86 \pm 0.43 \pm 0.10) \times 10^{-3}$$

a_{μ} for KK $\pi\pi$

Use the results presented above for

(II) $e^+e^- \rightarrow K_s K^+\pi^-\pi^0$ and

(III) $e^+e^- \rightarrow K_S K_L \pi^0 \pi^0$

combined with our already published results for

- $e^+e^- \rightarrow K^+K^-\pi^+\pi^-$, $K^+K^-\pi^0\pi^0$ [PRD 86 (2012) 012008];
- $e^+e^- \rightarrow K_S K_S \pi^+\pi^-$, $K_S K_L \pi^+\pi^-$ [PRD 89 (2014) 092002]

(including study of the intermediate states for all channels)

to calculate the contribution of KK $\pi\pi$ states to a_{μ} with a <u>much reduced reliance</u> on isospin relations to cover unmeasured channels

- Contribution to a_{μ} for $E_{CM} < 1.8$ GeV is [8.5 ± 0.5 (stat+syst)] x 10⁻¹¹ (6% precision)
- Previous result was [13.5 ± 3.9 (stat+syst)] x 10⁻¹¹ (30% precision)

(IV) Measurement of the $e^+e^- \rightarrow \pi^+\pi^-\eta$ cross section

- Provides a sizable contribution to the total hadronic cross section in the region relevant for a_{μ}
- Based on the final Babar data set (469 fb⁻¹) and the $\eta \rightarrow \gamma \gamma$ decay mode
- Complements and improves the precision of the Babar result from 2007 [PRD 76 (2007) 092005], based on 232 fb⁻¹ and the $\eta \rightarrow \pi^+\pi^-\pi^0$ decay mode

Summary

- Precise low-energy e⁺e⁻ hadronic cross section data needed to obtain an accurate SM prediction for a^{had,LO-VP}
- New results on from Babar reduce the respective uncertainty in $a_{\mu}^{\ \ had,LO-Vp}$ due to
 - $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ from around 7% to around 3% [175 ± 6 (stat+syst)] x 10⁻¹¹
 - $e^+e^- \rightarrow KK\pi\pi$ from around 30% to around 6% [8.5 ± 0.5 (stat+syst)] x 10⁻¹¹
- With the new data, including recently published results on $e^+e^- \rightarrow K^+K^-$ and K_SK_L from Babar, can perhaps reduce the uncertainty in the SM prediction for $a_{\mu}^{had,LO-VP}$ by up to 50% in the next few years [Blum et al., arXiv:1311.2198 (2013)]
- Besides the implications for $a_{\mu}^{had,LO-VP}$, the Babar ISR program has provided new tests of QCD, a wealth of information about low-mass resonances, and first observations of cross sections, and J/ ψ and ψ (2S) branching fractions