Femtoscopy in $\sqrt{s_\mathrm{NN}} = 5.02$ TeV p-Pb collisions with ATI AS ATLAS-CONF-2016-027

Michael (Felix) Clark

On behalf of the ATLAS collaboration XLVI International Symposium on Multiparticle Dynamics Jeju island, South Korea

August 29, 2016

Motivation

φ∆ 0

η∆

φ∆ 0 2 4

1

- ridge" is observed in $p+Pb$ (below) and pp (left) collisions – near-side long-range angular correlation
- \triangleright predicted by hydrodynamics, but the applicability in small systems is controversial
- \triangleright want independent handle on spacetime evolution of source $ATLAS$ p+Pb $\sqrt{s_{NN}}$ =5.02 TeV

η[∆](#page-26-0)

(b)

-2 pm

 $2Q$ 2/37

Introduction

 \triangleright Momentum-space 2-particle correlation functions,

$$
C(\mathbf{p}_1, \mathbf{p}_2) \equiv \frac{\frac{dN_{12}}{d^3 p_1 d^3 p_2}}{\frac{dN_1}{d^3 p_1} \frac{dN_2}{d^3 p_2}},
$$

are sensitive to the 2-particle source density function $S_k(\mathbf{r})$:

$$
C_{\mathbf{k}}(\mathbf{q}) = \int d^3r \, S_{\mathbf{k}}(\mathbf{r}) \, |\psi_{\mathbf{q}}(\mathbf{r})|^2 \ .
$$

r is the displacement between the 2 particles at freezeout, $\mathbf{k} = (\mathbf{p}_1 + \mathbf{p}_2)/2$ is the average pair momentum, and $\mathbf{q} = (\mathbf{p}_1 - \mathbf{p}_2)$ is the relative momentum.

 \blacktriangleright Background $\frac{dN_1}{dp_1}$ dN_2 $\frac{dN_2}{dp_2}$ is formed by event-mixing within intervals of centrality and longitudinal position of the collision vertex.

Introduction

 \triangleright Bose-Einstein correlations between identical pions provide particularly good resolution of the source function.

- For identical non-interacting bosons, $C_k(\mathbf{q}) = 1 + \mathcal{F}[S_k(\mathbf{r})]$.

- \triangleright $C_k(q)$ is fit to some function and extract characteristic length scales of $S_k(r)$, which are referred to as the HBT radii.
- \triangleright ATLAS data is described well by exponential fits to the Bose-Einstein part of two-pion correlation functions C_{BF} :

$$
C_{BE}(q)=1+e^{-|Rq|}.
$$

The analysis is done as a function of Lorentz invariant q_{inv} and of 3 dimensional \boldsymbol{q} , in which case R is a symmetric matrix.

– In 1D, Cauchy source function: $S_{\rm inv}(r) \propto \left(1+ R_{\rm inv}^{-2} r^2\right)^{-1}$

Introduction

The full experimental correlation function used is the Bowler-Sinyukov form:

$$
\mathcal{C}_{\exp}(\mathbf{q}) = \left[(1-\lambda) + \lambda \mathcal{K}(q_{\text{inv}}) \mathcal{C}_{\mathcal{B} \mathcal{E}}(\mathbf{q}) \right] \Omega(\mathbf{q}) \;,
$$

- \triangleright K(q_{inv}) accounts for Coulomb interactions between the pions
- \triangleright $\Omega(\mathbf{q})$ represents the non-femtoscopic background features of the correlation function
- \triangleright λ is a parameter $0 \leq \lambda \leq 1$ that accounts for mis-identified pions, coherent emission, and long-lived decays ($\lambda = 1$ in an idealized limit)

ATLAS inner detector

- \triangleright Pixel detector 82 million silicon pixels
- \triangleright Semiconductor Tracker 6.2 million silicon microstrips
- \triangleright Transition Radiation Tracker 350k drift tubes
- \triangleright 2 T axial magnetic field

Reconstructed tracks from $|\eta| < 2.5$ and $p_T > 0.1~{\, {\rm GeV}}$

Data selection

- ► 2013 $p+$ Pb run from the LHC at $\sqrt{s_\mathrm{NN}} = 5.02 \,\, \mathrm{TeV}$
- \triangleright 28 nb⁻¹ minimum bias data
- \triangleright centrality, an experimental proxy for impact parameter, is determined from $\sum E_T$ in the Pb-going forward calorimeter at $3.1 < |\eta| < 4.9$

Pion identification

Charged pions are identified using dE/dx measured with time over threshold of charge deposited in pixel hits.

 \blacktriangleright The pair purity estimated from HIJING simulation is shown (left) as a function of pair k_{T} and $y_{\pi\pi}^*$.

 $y_{\pi\pi}^\star = y_{\pi\pi} - 0.465$ is the rapidity in the nucleon-nucleon centre-of-momentum frame.

ATLAS-CONF-2016-027

Jet fragmentation correlation

- \blacktriangleright significant background contribution observed in the two-particle correlation function, even in HIJING which has no femtoscopic signal (top)
- \triangleright suppressing hard processes in HIJING causes the correlation to disappear (bottom)
- \triangleright opposite-sign correlations also contain jet fragmentation correlations, but no BE enhancement
- \blacktriangleright jet fragmentation is measured in opposite-sign and the results are used to predict it in same-sign

Jet fragmentation correlation

Common methods to account for this background include:

- 1. Using a double ratio, dividing by correlation function in Monte Carlo simulation: $C(q) = C^{data}(q)/C^{MC}(q)$.
	- \triangleright MC tends to over-estimate the magnitude of the effect, skewing results significantly
- 2. Partially describing the background shape using simulation and allowing additional free parameters in the fit.
	- \triangleright additional free parameters can bias the fits

In this analysis the jet fragmentation is measured in opposite-sign data and a mapping is derived in Pythia 8 to predict the form in same-sign (see backup slides, ATLAS-CONF-2016-027).

Summary of fitting procedure

1. amplitude and width of opposite-sign correlation function are measured, with resonances removed by mass cuts (blue dashed)

2. the results from $+-$ are used to fix $\pm\pm$ background (violet dotted)

3. source radii are extracted by fitting full correlation function $\pm\pm$ (dark red) while including jet background

ATLAS-CONF-2016-027

Example fit to invariant correlation function

fit and background estimation typically describe $C(q_{\text{inv}})$ quite well

KID KARD KE KIER E KORO 12/37

Results for invariant radius R_{inv}

 k_T [GeV] 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 R_{inv} [fm] $0 ^{\dagger}$ $2-$ 3H 4⊨ 5 $-$ 6는 7는 8 F 0-1% 10-20% 40-50% 70-80% **AS** Preliminary p +Pb 2013, 28 nb $\sqrt{s_{\text{NIN}}}=5.02 \text{ TeV}$ $-1 < y^*_{\pi\pi} <$

Decrease with rising k_T in central collisions, consistent with collective behavior. This feature disappears in peripheral collisions. Radii increase in Pb-going direction of central events. Peripheral are constant with rapidity.

N.B. Widths of boxes in these plots vary only for visual clarity.

ATLAS-CONF-2016-027

Results for invariant radius R_{inv}

Scaling of R_{inv} with the cube root of average multiplicity curves slightly upward.

Across centrality and rapidity intervals, the source size is tightly correlated with the local multiplicity.

 dN_{ch}/dy^*

ππ

ππ

ππ

- First such observation

3D fit results

In three dimensions, the Bertsch-Pratt ("out-side-long") coordinate system is used. It is boosted to the longitudinal co-moving frame (LCMF) of each pair.

 R_{out} : along k_{T}

 $R_{\rm side}$: other transverse direction

 R_{long} : longitudinal (boosted to LCMF)

Ann. Rev. Nucl. Part. Sci. 55 (2005) 357 The Bose-Einstein part of the correlation function is fit to an quasi-ellipsoid exponential:

$$
\mathcal{C}_{BE}(\mathbf{q}) = 1 + \exp\left(-\|\mathcal{R}\mathbf{q}\|\right)
$$
\n
$$
R = \left(\begin{array}{ccc} R_{\text{out}} & 0 & R_{\text{ol}} \\ 0 & R_{\text{side}} & 0 \\ R_{\text{ol}} & 0 & R_{\text{long}} \end{array}\right).
$$
\n
$$
R = \left(\begin{array}{ccc} R_{\text{out}} & 0 & R_{\text{out}} \\ R_{\text{out}} & 0 & R_{\text{long}} \end{array}\right).
$$

Example fit to 3D correlation function

Fit works well globally $(\chi^2/{\rm d.o.f.}=1.03)$ but appears poor along $q_{\rm out}$ axis, where the tracks have the same outgoing angle. Moving just 1 or 2 bins along $q_{\rm side}$ or $q_{\rm long}$ helps significantly.

R_{out} vs. k_{T} and y_{π}^* $\pi\pi$

 k_T [GeV] 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 R_{out} [fm] $0 ^{\dagger}$ 2는 3⊢ 4⊨ 5는 6_l 0-1% 10-20% 40-50% 70-80% **S** Preliminary p+Pb 2013, 28 nb⁻¹ $\sqrt{s_{\text{NIN}}}=5.02 \text{ TeV}$ ππ $-1 < v^*$ R_{out} [fm]
 0늣 1-2는 3는 4는 5는 6 decreasing size with rising k_T in central events; trend is diminished in peripheral

ππ y* −2 −1.5 −1 −0.5 0 0.5 1 0-1% 10-20% 40-50% 70-80% **S** Preliminar p+Pb 2013, 28 nb $\sqrt{s_{NN}} = 5.02$ TeV $0.2 < k_{\rm T} < 0.3$ GeV

radii vs. $y_{\pi\pi}^{\star}$ are flat in peripheral, and larger on Pb-going side of central

 R_{out} is typically the smallest HBT radius

$R_{\rm side}$ vs. $k_{\rm T}$ and y^{\star}_{π} $\pi\pi$

ہ 7 R_{side} [fm] **TLAS** Preliminary \bullet 0-1% \bullet 10-20% p+Pb 2013, 28 nb⁻¹ 6H 40-50% 70-80% 5⊢ $\left| \bullet \right|$ $4-$ 3H $2 \vdash$ $\sqrt{s_{\text{min}}}$ = 5.02 TeV $-1 < y^* < 0$ ππ 0^{++}_{--} 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 k_T [GeV] decreasing size with rising k_T in central events; trend is

diminished in peripheral

radii vs. $y_{\pi\pi}^{\star}$ are flat in peripheral, and larger on Pb-going side of central

KEL KALA KEL KEL KAR

18/37

 R_{side} is typically in between R_{out} and R_{long}

 $R_{\rm long}$ vs. $k_{\rm T}$ and y^{\star}_{π} $\pi\pi$

 k_T [GeV] 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 R_{long} [fm]
 $0 \sqrt{S_{NN}} = 5.02 \text{ TeV}$ $-1 < y^*_{\pi\pi} < 0$ $2-$ 3F 4⊨ 5 \vdash 6는 7F 8 \Box 0-1% 10-20% 40-50% 70-80% **ATLAS** Preliminary p+Pb 2013, 28 nb $-1 < y^*_{\pi\pi} <$ −2 −1.5 −1 −0.5 0 0.5 1 R_{long} [fm] 0등 1-2는 3⊨ 4⊣− 타 6는 7는 8 \Box 0-1% 10-20% 40-50% 70-80% **ATLAS** Preliminary n+Ph 2013, 28 nb $\sqrt{s_{_{NN}}}$ = 5.02 TeV $0.2 < k_T < 0.3$ GeV decreasing size with rising k_T in central events; trend is diminished in peripheral radii vs. $y_{\pi\pi}^{\star}$ are flat in peripheral, and larger on Pb-going side of central

 R_{long} is typically the largest HBT radius

ATLAS-CONF-2016-027

 $y^{\star}_{\pi\pi}$

3D radii vs. multiplicity (global and local)

 R_{side} and R_{long} exhibit same qualitative behavior as R_{out} (backup)

ATLAS-CONF-2016-027

Ratio of $R_{\text{out}}/R_{\text{side}}$

- \triangleright R_{out} couples to the lifetime directly where R_{side} does not
- small ratio $R_{\text{out}}/R_{\text{side}}$ is indicative of "explosive" event
- steadily decreases with rising k_T and is constant over rapidity
- marginally larger in central events

discussion in Ann. Rev. Nucl. Part. Sci. 55 (2005) 357 plots from ATLAS-CONF-2016-027

Transverse area and volume elements

At low k_T , the transverse area element $R_{\text{out}}R_{\text{side}}$ scales linearly with multiplicity, indicating constant transverse areal density ATLAS-CONF-201[6-02](#page-20-0)7
ATLAS-CONF-2016-027

22/37

Aside: Glauber-Gribov colour fluctuations (GGCF)

Number of nucleon participants N_{part} calculated with:

- **In Glauber model with constant cross section** σ_{NN}
- **In Glauber-Gribov color fluctuation (GGCF) model, which allow** σ_{NN} to fluctuate event-by-event
- ω_{σ} parameterizes width of fluctuations

(above: N_{part} distributions and corresponding centrality)

see [Eur. Phys. J. C \(2016\) 76:199](http://dx.doi.org/10.1140/epjc/s10052-016-4002-3)

Volume– N_{part} scaling including color fluctuations

- \triangleright volume scaling curvature with N_{part} is more modest when fluctuations in the proton's size are accounted for
- \triangleright exact linear scaling not necessary, but extreme deviations are difficult to explain
- \triangleright shows that fluctuations in the nucleon-nucleon cross-section are crucial for understanding initial geometry of $p+Pb$ collisions

$R_{\rm ol}$ cross term

In central events on the forward side, there is strong evidence of a positive R_{ol} (4.8 σ combined significance in 0–1% centrality)

- \triangleright demonstrates breaking of boost invariance: z-asymmetry is manifest in proton-going side.
- \triangleright requires both longitudinal and transverse expansion in hydrodynamic models
- First time this has been observed in $p+Pb$

Conclusion

- \triangleright One- and three-dimensional HBT radii are measured in proton-lead collisions at 5 TeV.
- \triangleright These measurements are presented differentially in centrality, transverse momentum, and rapidity.
- \blacktriangleright HBT Radii in central events show a decrease with increasing k_T , which is qualitatively consistent with collective expansion. This trend is diminished in peripheral events.
- \triangleright Accounting for fluctuations in the nucleon-nucleon cross section is seen to significantly affect the behavior of the source size.
- \blacktriangleright First observation that the source size is tightly correlated with local (rapidity-differential) multiplicity.
- First evidence for non-zero (positive) R_{ol} on the proton-going side of central events is observed.

BACKUP SLIDES

4 ロ → 4 레 → 4 리 → 4 로 → 1 코 → 9 9 0 - 26/37

Pion identification

Three PID selection criteria are defined, and a variation from the nominal selection to a looser and tigher definition is used as a systematic variation.

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$ $2Q$ 27/37

Wide correlation disappears in opposite-sign too when turning off hard processes

28/37

K ロ ▶ K 個 ▶ K ミ ▶ K ミ ▶ │ 글 │ K 9 Q Q

Jet fragmentation correlation

A data-driven method is developed to constrain the effect of hard processes. Fits to the opposite-sign correlation function are used to predict the fragmentation correlation in same-sign. This has its own challenges.

- 1. Resonances appear in the opposite-sign correlation functions
	- **IF** mass cuts around ρ , K_S , and ϕ
	- ighthroatend cut off opposite-sign fit below 0.2 GeV
- 2. Fragmentation has different effect on the opposite-sign correlation function than on the same-sign
	- \triangleright a mapping is derived from opposite- to same-sign using simulation
	- poposite-sign fit results in the data are used to fix the background description in the same-sign

Jet fragmentation correlation

The jet fragmentation is modeled as a stretched exponential in q_{inv} :

$$
\Omega(q_{\rm inv})=1+\lambda_{\rm bkgd}^{\rm inv}e^{-\left|R_{\rm bkgd}^{\rm inv}q_{\rm inv}\right|^{\alpha_{\rm bkgd}^{\rm inv}}}
$$

In 3D it is factorized into components parallel and perpendicular to jet axis

$$
\Omega(\textbf{q})=1+\lambda^{\text{osl}}_{\text{bkgd}}e^{-\left|R^{\text{out}}_{\text{bkgd}}\textit{q}_{\text{out}}\right|^{\alpha^{\text{out}}_{\text{bkgd}}}-\left|R^{\text{sl}}_{\text{bkgd}}\textit{q}_{\text{sl}}\right|^{\alpha^{\text{sl}}_{\text{bkgd}}}
$$

with $q_{\rm{sl}}=\sqrt{q_{\rm{side}}^2+q_{\rm{long}}^2}.$

These parameters are studied in Pythia, and a mapping from opposite-sign to same-sign values is derived.

Jet fragmentation mapping (invariant)

model $R_{\rm inv}^{\pm\pm}$ as proportional to $R_{\rm inv}^{+-}$ (right). Then with constant fixed, do k_T -dependent comparison of background amplitude in $\pm\pm$ and $+-$ (left). Does not work perfectly but does increasingly well at high k_T , where the effect is relevant.

Jet fragmentation mapping (3D)

32/37

KOD KAR KED KED E YOUR

Systematics example (R_{inv})

The above plots show the contributions of each systematic uncertainty on R_{inv} as a function of k_{T} and N_{part} .

イロメ イ押メ イヨメ イヨメ

33/37

 $2Q$

Systematics example (λ_{inv})

The above plots show the contributions of each systematic uncertainty on λ_{inv} as a function of k_{T} and N_{part} .

34/37

 2990

э

イロメ イ押メ イヨメ イヨメ

Invariant λ

 $3D\lambda$

3D radii vs. multiplicity (global and local)

- \triangleright scaling vs. $< dN/d\eta >^{1/3}$ shown on left
- \blacktriangleright three-dimensional radii also tightly correlated with local multiplicity (right)

ATLAS-CONF-2016-027

37/37

 209

∍