Femtoscopy in $\sqrt{s_{\rm NN}} = 5.02$ TeV *p*-Pb collisions with *ATLAS* ATLAS-CONF-2016-027

Michael (Felix) Clark

On behalf of the ATLAS collaboration XLVI International Symposium on Multiparticle Dynamics Jeju island, South Korea

August 29, 2016

Motivation

- "ridge" is observed in p+Pb (below) and pp (left) collisions – near-side long-range angular correlation
- predicted by hydrodynamics, but the applicability in small systems is controversial
- want independent handle on spacetime evolution of source

ΣE^{Pb}>80 GeV

(b)

Introduction

Momentum-space 2-particle correlation functions,

$$C(\mathbf{p}_1, \mathbf{p}_2) \equiv rac{rac{dN_{12}}{d^3 p_1 d^3 p_2}}{rac{dN_1}{d^3 p_1} rac{dN_2}{d^3 p_2}} \; ,$$

are sensitive to the 2-particle source density function $S_{\mathbf{k}}(\mathbf{r})$:

$$C_{\mathbf{k}}(\mathbf{q}) = \int d^3 r \, S_{\mathbf{k}}(\mathbf{r}) \left| \psi_{\mathbf{q}}(\mathbf{r})
ight|^2 \; .$$

r is the displacement between the 2 particles at freezeout, $\mathbf{k} = (\mathbf{p}_1 + \mathbf{p}_2)/2$ is the average pair momentum, and $\mathbf{q} = (\mathbf{p}_1 - \mathbf{p}_2)$ is the relative momentum.

Background ^{dN1}/_{dp1} ^{dN2}/_{dp2} is formed by event-mixing within intervals of centrality and longitudinal position of the collision vertex.

Introduction

 Bose-Einstein correlations between identical pions provide particularly good resolution of the source function.

- For identical non-interacting bosons, $C_{\mathbf{k}}(\mathbf{q}) = 1 + \mathcal{F}[S_{\mathbf{k}}(\mathbf{r})].$

- C_k(q) is fit to some function and extract characteristic length scales of S_k(r), which are referred to as the HBT radii.
- ATLAS data is described well by exponential fits to the Bose-Einstein part of two-pion correlation functions C_{BE}:

$$\mathcal{C}_{BE}(q) = 1 + e^{-|Rq|}$$

The analysis is done as a function of Lorentz invariant q_{inv} and of 3 dimensional **q**, in which case *R* is a symmetric matrix.

- In 1D, Cauchy source function: $S_{
m inv}(r) \propto \left(1+R_{
m inv}^{-2}r^2
ight)^{-1}$

Introduction

The full experimental correlation function used is the Bowler-Sinyukov form:

$$\mathcal{C}_{ ext{exp}}(\mathbf{q}) = \left[(1-\lambda) + \lambda \mathcal{K}(q_{ ext{inv}}) \mathcal{C}_{\mathcal{BE}}(\mathbf{q})
ight] \Omega(\mathbf{q}) \ ,$$

- $K(q_{inv})$ accounts for Coulomb interactions between the pions
- Ω(q) represents the non-femtoscopic background features of the correlation function
- ▶ λ is a parameter $0 \le \lambda \le 1$ that accounts for mis-identified pions, coherent emission, and long-lived decays ($\lambda = 1$ in an idealized limit)

ATLAS inner detector

- Pixel detector 82 million silicon pixels
- Semiconductor Tracker 6.2 million silicon microstrips
- Transition Radiation Tracker 350k drift tubes
- ▶ 2 T axial magnetic field

Reconstructed tracks from $|\eta| < 2.5$ and $ho_{
m T} > 0.1~{
m GeV}$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Data selection

- ▶ 2013 *p*+Pb run from the LHC at $\sqrt{s_{\rm NN}} = 5.02~{\rm TeV}$
- \blacktriangleright 28 nb^{-1} minimum bias data
- ► centrality, an experimental proxy for impact parameter, is determined from $\sum E_{\rm T}$ in the Pb-going forward calorimeter at $3.1 < |\eta| < 4.9$

Pion identification

 Charged pions are identified using dE/dx measured with time over threshold of charge deposited in pixel hits.

 The pair purity estimated from HIJING simulation is shown (left) as a function of pair k_T and y^{*}_{ππ}.

 $y_{\pi\pi}^{\star} = y_{\pi\pi} - 0.465$ is the rapidity in the nucleon-nucleon centre-of-momentum frame.

ATLAS-CONF-2016-027

Jet fragmentation correlation

- significant background contribution observed in the two-particle correlation function, even in HIJING which has no femtoscopic signal (top)
- suppressing hard processes in HIJING causes the correlation to disappear (bottom)
- opposite-sign correlations also contain jet fragmentation correlations, but no BE enhancement
- jet fragmentation is measured in opposite-sign and the results are used to predict it in same-sign

Jet fragmentation correlation

Common methods to account for this background include:

- 1. Using a double ratio, dividing by correlation function in Monte Carlo simulation: $C(q) = C^{data}(q)/C^{MC}(q)$.
 - MC tends to over-estimate the magnitude of the effect, skewing results significantly
- 2. Partially describing the background shape using simulation and allowing additional free parameters in the fit.
 - additional free parameters can bias the fits

In this analysis the jet fragmentation is measured in opposite-sign data and a mapping is derived in Pythia 8 to predict the form in same-sign (see backup slides, ATLAS-CONF-2016-027).

Summary of fitting procedure

 amplitude and width of opposite-sign correlation function are measured, with resonances removed by mass cuts (blue dashed)

2. the results from +- are used to fix $\pm\pm$ background (violet dotted)

3. source radii are extracted by fitting full correlation function $\pm\pm$ (dark red) while including jet background

ATLAS-CONF-2016-027

Example fit to invariant correlation function

fit and background estimation typically describe $C(q_{inv})$ quite well

Results for invariant radius $R_{\rm inv}$

Decrease with rising $k_{\rm T}$ in central collisions, consistent with collective behavior. This feature disappears in peripheral collisions.

ATLAS Preliminary $p+Pb 2013, 28 \text{ nb}^{-1}$ 40-50% 70-80% 70-90%70-90%

Radii increase in Pb-going direction of central events. Peripheral are constant with rapidity.

N.B. Widths of boxes in these plots vary only for visual clarity.

ATLAS-CONF-2016-027

Results for invariant radius $R_{\rm inv}$

Scaling of R_{inv} with the cube root of average multiplicity curves slightly upward.

Across centrality and rapidity intervals, the source size is tightly correlated with the local multiplicity.

- First such observation

3D fit results

In three dimensions, the Bertsch-Pratt ("out-side-long") coordinate system is used. It is boosted to the longitudinal co-moving frame (LCMF) of each pair.

 $R_{\rm out}$: along $k_{\rm T}$

 $R_{\rm side}$: other transverse direction

 R_{long} : longitudinal (boosted to LCMF)

Ann. Rev. Nucl. Part. Sci. 55 (2005) 357 The Bose-Einstein part of the correlation function is fit to an quasi-ellipsoid exponential:

$$C_{BE}(\mathbf{q}) = 1 + \exp\left(-\|R\mathbf{q}\|\right)$$

$$R = \begin{pmatrix} R_{\text{out}} & 0 & R_{\text{ol}} \\ 0 & R_{\text{side}} & 0 \\ R_{\text{ol}} & 0 & R_{\text{long}} \end{pmatrix}.$$
(15/3)

Example fit to 3D correlation function

Fit works well globally ($\chi^2/d.o.f. = 1.03$) but appears poor along q_{out} axis, where the tracks have the same outgoing angle. Moving just 1 or 2 bins along q_{side} or q_{long} helps significantly.

$R_{\rm out}$ vs. $k_{\rm T}$ and $y_{\pi\pi}^{\star}$

decreasing size with rising $k_{\rm T}$ in central events; trend is diminished in peripheral

Rout [fm]

radii vs. $y_{\pi\pi}^{\star}$ are flat in peripheral, and larger on Pb-going side of central

 $R_{\rm out}$ is typically the smallest HBT radius

ATLAS-CONF-2016-027

 $R_{\rm side}$ vs. $k_{\rm T}$ and $y_{\pi\pi}^{\star}$

ATLAS Preliminary $p+Pb 2013, 28 nb^{-1}$ 40-50% 10-20%

radii vs. $y_{\pi\pi}^{\star}$ are flat in peripheral, and larger on Pb-going side of central

 $R_{\rm side}$ is typically in between $R_{\rm out}$ and $R_{\rm long}$

 $R_{
m long}$ vs. $k_{
m T}$ and $y^{\star}_{\pi\pi}$

 R_{long} is typically the largest HBT radius

ATLAS-CONF-2016-027

3D radii vs. multiplicity (global and local)

 $R_{
m side}$ and $R_{
m long}$ exhibit same qualitative behavior as $R_{
m out}$ (backup)

Ratio of $R_{\rm out}/R_{\rm side}$

- ▶ $R_{\rm out}$ couples to the lifetime directly where $R_{\rm side}$ does not
- ▶ small ratio $R_{\rm out}/R_{\rm side}$ is indicative of "explosive" event
- steadily decreases with rising $k_{\rm T}$ and is constant over rapidity
- marginally larger in central events

discussion in Ann. Rev. Nucl. Part. Sci. 55 (2005) 357 plots from ATLAS-CONF-2016-027

Transverse area and volume elements

At low $k_{\rm T}$, the transverse area element $R_{\rm out}R_{\rm side}$ scales linearly with multiplicity, indicating constant transverse areal density ${}^{\rm ATLAS-CONF-2016-027}$

22/37

Aside: Glauber-Gribov colour fluctuations (GGCF)

Number of nucleon participants $N_{\rm part}$ calculated with:

- Glauber model with constant cross section $\sigma_{\rm NN}$
- ► Glauber-Gribov color fluctuation (GGCF) model, which allow σ_{NN} to fluctuate event-by-event
- ω_σ parameterizes width of fluctuations

(above: N_{part} distributions and corresponding centrality)

see Eur. Phys. J. C (2016) 76:199

Volume– N_{part} scaling including color fluctuations

- volume scaling curvature with N_{part} is more modest when fluctuations in the proton's size are accounted for
- exact linear scaling not necessary, but extreme deviations are difficult to explain
- shows that fluctuations in the nucleon-nucleon cross-section are crucial for understanding initial geometry of p+Pb collisions

$R_{ m ol}$ cross term

In *central events* on the *forward* side, there is strong evidence of a positive $R_{\rm ol}$ (4.8 σ combined significance in 0–1% centrality)

- demonstrates breaking of boost invariance: z-asymmetry is manifest in proton-going side.
- requires both longitudinal and transverse expansion in hydrodynamic models
- First time this has been observed in p+Pb

Conclusion

- One- and three-dimensional HBT radii are measured in proton-lead collisions at 5 TeV.
- These measurements are presented differentially in centrality, transverse momentum, and rapidity.
- HBT Radii in central events show a decrease with increasing k_T, which is qualitatively consistent with collective expansion. This trend is diminished in peripheral events.
- Accounting for fluctuations in the nucleon-nucleon cross section is seen to significantly affect the behavior of the source size.
- First observation that the source size is tightly correlated with local (rapidity-differential) multiplicity.
- ► First evidence for non-zero (positive) *R*_{ol} on the proton-going side of central events is observed.

BACKUP SLIDES

- うとの 川川 (小田) (山) (山) (山) (山)

26/37

Pion identification

Three PID selection criteria are defined, and a variation from the nominal selection to a looser and tigher definition is used as a systematic variation.

Wide correlation disappears in opposite-sign too when turning off hard processes

・ロト (個) (目) (目) (目) (28/37)

Jet fragmentation correlation

A data-driven method is developed to constrain the effect of hard processes. Fits to the opposite-sign correlation function are used to predict the fragmentation correlation in same-sign. This has its own challenges.

- 1. Resonances appear in the opposite-sign correlation functions
 - mass cuts around ρ , K_S , and ϕ
 - cut off opposite-sign fit below 0.2 ${
 m GeV}$
- 2. Fragmentation has different effect on the opposite-sign correlation function than on the same-sign
 - ▶ a mapping is derived from opposite- to same-sign using simulation
 - opposite-sign fit results in the data are used to fix the background description in the same-sign

Jet fragmentation correlation

The jet fragmentation is modeled as a stretched exponential in q_{inv} :

$$\Omega(q_{ ext{inv}}) = 1 + \lambda_{ ext{bkgd}}^{ ext{inv}} e^{-|R_{ ext{bkgd}}^{ ext{inv}}q_{ ext{inv}}|^{lpha_{ ext{bkgd}}^{ ext{inv}}}}$$

In 3D it is factorized into components parallel and perpendicular to jet axis

$$\Omega(\mathbf{q}) = 1 + \lambda_{ ext{bkgd}}^{ ext{osl}} e^{-\left|R_{ ext{bkgd}}^{ ext{out}} q_{ ext{out}}
ight|^{lpha_{ ext{bkgd}}^{ ext{out}} - \left|R_{ ext{bkgd}}^{ ext{sl}} q_{ ext{sl}}
ight|^{lpha_{ ext{bkgd}}^{ ext{sl}}}}$$

with $q_{
m sl}=\sqrt{q_{
m side}^2+q_{
m long}^2}.$

These parameters are studied in Pythia, and a mapping from opposite-sign to same-sign values is derived.

Jet fragmentation mapping (invariant)

model $R_{inv}^{\pm\pm}$ as proportional to R_{inv}^{+-} (right). Then with constant fixed, do $k_{\rm T}$ -dependent comparison of background amplitude in $\pm\pm$ and +- (left). Does not work perfectly but does increasingly well at high $k_{\rm T}$, where the effect is relevant.

Jet fragmentation mapping (3D)

Systematics example (R_{inv})

The above plots show the contributions of each systematic uncertainty on R_{inv} as a function of k_T and N_{part} .

< ロ > < 同 > < 回 > < 回 > < 回 >

Systematics example (λ_{inv})

The above plots show the contributions of each systematic uncertainty on λ_{inv} as a function of k_T and N_{part} .

< ロ > < 同 > < 回 > < 回 > < 回 >

Invariant λ

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 臣 め Q @ 35/37

3D λ

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ◆ ● ● のへで 36/37

3D radii vs. multiplicity (global and local)

- scaling vs. $< dN/d\eta >^{1/3}$ shown on left
- three-dimensional radii also tightly correlated with local multiplicity (right)

ATLAS-CONE-2016-027