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Motivation
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I “ridge” is observed in p+Pb (below) and
pp (left) collisions – near-side long-range
angular correlation

I predicted by hydrodynamics, but the
applicability in small systems is
controversial

I want independent handle on spacetime
evolution of source
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Introduction

I Momentum-space 2-particle correlation functions,

C (p1,p2) ≡
dN12

d3p1d3p2
dN1

d3p1

dN2

d3p2

,

are sensitive to the 2-particle source density function Sk(r):

Ck(q) =

∫
d3r Sk(r) |ψq(r)|2 .

r is the displacement between the 2 particles at freezeout,
k = (p1 + p2)/2 is the average pair momentum, and q = (p1 − p2)
is the relative momentum.

I Background dN1

dp1

dN2

dp2
is formed by event-mixing within intervals of

centrality and longitudinal position of the collision vertex.
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Introduction

I Bose-Einstein correlations between identical pions provide
particularly good resolution of the source function.

- For identical non-interacting bosons, Ck(q) = 1 + F [Sk(r)].

I Ck(q) is fit to some function and extract characteristic length
scales of Sk(r), which are referred to as the HBT radii.

I ATLAS data is described well by exponential fits to the
Bose-Einstein part of two-pion correlation functions CBE :

CBE (q) = 1 + e−|Rq| .

The analysis is done as a function of Lorentz invariant qinv and of 3
dimensional q, in which case R is a symmetric matrix.

- In 1D, Cauchy source function: Sinv(r) ∝
(
1 + R−2invr

2
)−1
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Introduction

The full experimental correlation function used is the Bowler-Sinyukov
form:

Cexp(q) = [(1− λ) + λK (qinv)CBE (q)] Ω(q) ,

I K (qinv) accounts for Coulomb interactions between the pions

I Ω(q) represents the non-femtoscopic background features of the
correlation function

I λ is a parameter 0 ≤ λ ≤ 1 that accounts for mis-identified pions,
coherent emission, and long-lived decays (λ = 1 in an idealized
limit)
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ATLAS inner detector

I Pixel detector - 82 million silicon pixels

I Semiconductor Tracker - 6.2 million silicon microstrips

I Transition Radiation Tracker - 350k drift tubes

I 2 T axial magnetic field

Reconstructed tracks from |η| < 2.5 and pT > 0.1 GeV
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Data selection

I 2013 p+Pb run from the LHC at
√
sNN = 5.02 TeV

I 28 nb−1 minimum bias data

I centrality, an experimental proxy for impact parameter, is
determined from

∑
ET in the Pb-going forward calorimeter at

3.1 < |η| < 4.9
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Pion identification
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I Charged pions are
identified using dE/dx
measured with time
over threshold of charge
deposited in pixel hits.

I The pair purity
estimated from HIJING
simulation is shown
(left) as a function of
pair kT and y ?ππ.

y ?ππ = yππ − 0.465 is the rapidity in the nucleon-nucleon
centre-of-momentum frame.
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Jet fragmentation correlation

I significant background
contribution observed in the
two-particle correlation function,
even in HIJING which has no
femtoscopic signal (top)

I suppressing hard processes in
HIJING causes the correlation to
disappear (bottom)

I opposite-sign correlations also
contain jet fragmentation
correlations, but no BE
enhancement

I jet fragmentation is measured in
opposite-sign and the results are
used to predict it in same-sign
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Jet fragmentation correlation

Common methods to account for this background include:

1. Using a double ratio, dividing by correlation function in Monte
Carlo simulation: C (q) = C data(q)/CMC (q) .

I MC tends to over-estimate the magnitude of the effect, skewing
results significantly

2. Partially describing the background shape using simulation and
allowing additional free parameters in the fit.

I additional free parameters can bias the fits

In this analysis the jet fragmentation is measured in opposite-sign data
and a mapping is derived in Pythia 8 to predict the form in same-sign
(see backup slides, ATLAS-CONF-2016-027).
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Summary of fitting procedure
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dashed)

2. the results from +− are used to fix ±± background (violet dotted)

3. source radii are extracted by fitting full correlation function ±±
(dark red) while including jet background
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Example fit to invariant correlation function
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Results for invariant radius Rinv
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Decrease with rising kT in central
collisions, consistent with
collective behavior. This feature
disappears in peripheral collisions.

Radii increase in Pb-going
direction of central events.
Peripheral are constant with
rapidity.

N.B. Widths of boxes in these plots vary only for visual clarity.
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Results for invariant radius Rinv
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Scaling of Rinv with the cube root
of average multiplicity curves
slightly upward.

Across centrality and rapidity
intervals, the source size is
tightly correlated with the local
multiplicity.
- First such observation
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3D fit results
In three dimensions, the Bertsch-Pratt (”out-side-long”) coordinate
system is used. It is boosted to the longitudinal co-moving frame
(LCMF) of each pair.

Rout: along kT

Rside: other transverse direction

Rlong: longitudinal (boosted to LCMF)

Ann. Rev. Nucl. Part. Sci. 55 (2005) 357

The Bose-Einstein part of the correlation function is fit to an
quasi-ellipsoid exponential:

CBE (q) = 1 + exp (−‖Rq‖)

R =

 Rout 0 Rol

0 Rside 0
Rol 0 Rlong

 .
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Example fit to 3D correlation function
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Fit works well globally (χ2/d.o.f. = 1.03) but appears poor along qout
axis, where the tracks have the same outgoing angle. Moving just 1 or 2
bins along qside or qlong helps significantly.
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Rout vs. kT and y ?ππ
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decreasing size with rising kT in
central events; trend is
diminished in peripheral

radii vs. y ?ππ are flat in
peripheral, and larger on
Pb-going side of central

Rout is typically the smallest HBT radius
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Rside vs. kT and y ?ππ
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diminished in peripheral

radii vs. y ?ππ are flat in
peripheral, and larger on
Pb-going side of central

Rside is typically in between Rout and Rlong
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Rlong vs. kT and y ?ππ
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Rlong is typically the largest HBT radius
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3D radii vs. multiplicity (global and local)
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scaling vs. < dN/dη >1/3

shown above

three-dimensional radii are also
tightly correlated with local
multiplicity

Rside and Rlong exhibit same qualitative behavior as Rout (backup)
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Ratio of Rout/ Rside
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I Rout couples to the lifetime directly where Rside does not

I small ratio Rout/Rside is indicative of “explosive” event

I steadily decreases with rising kT and is constant over rapidity

I marginally larger in central events

discussion in Ann. Rev. Nucl. Part. Sci. 55 (2005) 357
plots from ATLAS-CONF-2016-027
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Transverse area and volume elements
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At low kT, the transverse area element RoutRside scales linearly with
multiplicity, indicating constant transverse areal density
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Aside: Glauber-Gribov colour fluctuations (GGCF)
Number of nucleon participants Npart calculated with:

I Glauber model with constant cross section σNN

I Glauber-Gribov color fluctuation (GGCF) model, which allow σNN

to fluctuate event-by-event

ωσ parameterizes width of fluctuations
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(above: Npart distributions and corresponding centrality)
see Eur. Phys. J. C (2016) 76:199

http://dx.doi.org/10.1140/epjc/s10052-016-4002-3
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Volume–Npart scaling including color fluctuations
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I volume scaling curvature with Npart is more modest when
fluctuations in the proton’s size are accounted for

I exact linear scaling not necessary, but extreme deviations are
difficult to explain

I shows that fluctuations in the nucleon-nucleon cross-section are
crucial for understanding initial geometry of p+Pb collisions

ATLAS-CONF-2016-027



25/37

Rol cross term
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In central events on the forward side, there is strong evidence of a
positive Rol (4.8σ combined significance in 0–1% centrality)

I demonstrates breaking of boost invariance: z-asymmetry is
manifest in proton-going side.

I requires both longitudinal and transverse expansion in
hydrodynamic models

- First time this has been observed in p+Pb
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Conclusion

I One- and three-dimensional HBT radii are measured in proton-lead
collisions at 5 TeV.

I These measurements are presented differentially in centrality,
transverse momentum, and rapidity.

I HBT Radii in central events show a decrease with increasing kT,
which is qualitatively consistent with collective expansion. This
trend is diminished in peripheral events.

I Accounting for fluctuations in the nucleon-nucleon cross section is
seen to significantly affect the behavior of the source size.

I First observation that the source size is tightly correlated with local
(rapidity-differential) multiplicity.

I First evidence for non-zero (positive) Rol on the proton-going side
of central events is observed.
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Pion identification
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Three PID selection
criteria are defined, and
a variation from the
nominal selection to a
looser and tigher
definition is used as a
systematic variation.
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(Jet fragmentation in opposite-sign Hijing)
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Wide correlation disappears in opposite-sign too when turning off hard
processes
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Jet fragmentation correlation

A data-driven method is developed to constrain the effect of hard
processes. Fits to the opposite-sign correlation function are used to
predict the fragmentation correlation in same-sign. This has its own
challenges.

1. Resonances appear in the opposite-sign correlation functions
I mass cuts around ρ, KS , and φ
I cut off opposite-sign fit below 0.2 GeV

2. Fragmentation has different effect on the opposite-sign correlation
function than on the same-sign

I a mapping is derived from opposite- to same-sign using simulation
I opposite-sign fit results in the data are used to fix the background

description in the same-sign
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Jet fragmentation correlation

The jet fragmentation is modeled as a stretched exponential in qinv:

Ω(qinv) = 1 + λinvbkgde
−|R inv

bkgdqinv|
αinv
bkgd

In 3D it is factorized into components parallel and perpendicular to jet
axis

Ω(q) = 1 + λoslbkgde
−|Rout

bkgdqout|
αout
bkgd−|Rsl

bkgdqsl|
αsl
bkgd

with qsl =
√

q2
side + q2

long.

These parameters are studied in Pythia, and a mapping from
opposite-sign to same-sign values is derived.
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Jet fragmentation mapping (invariant)
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model R±±inv as proportional to R+−
inv (right). Then with constant fixed,

do kT-dependent comparison of background amplitude in ±± and +−
(left). Does not work perfectly but does increasingly well at high kT,
where the effect is relevant.
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Jet fragmentation mapping (3D)
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Systematics example (Rinv)
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The above plots show the contributions of each systematic uncertainty
on Rinv as a function of kT and Npart.
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Systematics example (λinv)
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The above plots show the contributions of each systematic uncertainty
on λinv as a function of kT and Npart.
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Invariant λ
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3D λ
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3D radii vs. multiplicity (global and local)
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I scaling vs.
< dN/dη >1/3

shown on left

I three-dimensional
radii also tightly
correlated with
local multiplicity
(right)
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