Overview of recent jet results in heavy ion collisions at LHC

Yongsun Kim (Korea University) ISMD2016, Jeju Island, Korea, 2016.09.01

Introduction

- Jet has been one of the most popular object in Heavy Ion communitiy in LHC era for its plenty
- From 2010, More than 30 papers/notes were born from ATLAS and CMS
- This was enabled by virtue of not only the superb detecting apparatus, but the enormous development of jet finding techniques, especially UE background subtraction as well as researchers' efforts
- In this presentation, jet results during LHC Run I phase are overviewed and the new results from PbPb@5.02TeV are introduced
- Remind that only CMS and ATLAS results are discussed but ALICE also published several jet measurements via charged particle jets

Part I Jets in pPb at 5.02TeV

Outline

- 1. Jet $R_{pA_{r}}$ and R_{CP}
- 2. Charm and bottom tagged jets
- 3. Di-Jet and nPDF

Jet R_{pA}

- R_{pPb} in centrality integrated collision is slightly above the unity, possibly due to interpolated pp reference
- ATLAS result indicates a strong centrality dependent reduction in the yield of jets in central collisions which is pronounced at high p_T

Jet R_{CP}

And interesting scaling behavior of Energy (not E_T) was observed in R_{CP} which was measured by ATLAS

Lesson about nPDF from jet R_{pA}

The CMS R_{pA} result contains the trend favoring the NLO calculation w/ EPS09, while overall amplitue is slightly above within uncertainty.

Jet p_T translated into Bjorken-x

...covering the **anti-shadowing** region as well as the onset of the EMC effect regime. BTW, There is a better tool for PDF study, which has two variables.....

nPDF via di-jet pairs

Why di-jet is good probe for PDF?

PDF is a two-dimentional function in (x, Q^2) , and Di-jet momentum provides 2-dimensional information for PDF

- x reflects $\eta_{dijet} = (\eta_1 + \eta_2)/2$ and \mathbf{Q}^2 by $p_T^{ave} = (p_T^1 + p_T^2)/2$ And back-to-back requriement suppresses complicated scatterings

This analysis used Run II pp data @5.02TeV as the reference, so the analysis also provides constraints for pp PDF models

Yongsun Kim

nPDF via di-jet pairs

pPb/pp ratio is compared to NLO calcuations from several nPDF models.

- Recall that the nPDF are usually demonstrated by ratio to pp Comparisons with DSSZ, EPS09, nCTEQ15 (nPDF) and CT14, MMHT14 (PDF) are presented in the note

9

R_{pA} of heavy quark jets

- The secondary vertex is used for b-tagging and c-tagging
 - $c \mathbf{\tau} \sim 100 \ \mu m$ is discriminable with CMS silicon tracker
 - Find the secondary vertex where 2+ (or 3+) tracks are merged
- Distributions of the "corrected secondary vertex mass" are fit
- R_{pPb} , evaluated from PYTHIA reference, is consistent to unitiv within uncertainties, yet their central points are slightly above 1

Did you notice that?

One of first jet quenching di-jet pairs in the first PbPb run

Jet library for PbPb

CMS	ATLAS Jet R _{AA}	PRL 113 (2014) 132301 b-jet R _{AA} PLB 719 (2013) 220-241 R _{CP}	CMS-HIN-12-004 RAA (PYTHIA reference) PRL 114 (2015) 072302 R AA	Pb Pb
Fragmentation function		PLB 730 (2014) 243 Jet shape	PRC 90 (2014) 024908 dN/dz (pT > 1GeV)	JHEP 10 (2012) 087 dN/dD(ξ) (p _T > 4GeV)
		PLB 739 (2014) 320-342 dN/dD(ξ)	ATLAS-CONF-2015-055 dN/dD(ξ) (pp referece)	PLB (2015) 376 Jet splitting
	Jet-track correlation	JHEP 1602 (2016) 156 Jet-track correlation	JHEP 01 (2016) 006 Missing vs jet R	CMS-HIN-15-011 Dependence on A _J
Di-je	Di iat	PRC 84 (2011) 024906 Momentum imbalance	PLB 712 (2012) 176 p _T dependence	ATLAS-CONF-2015-021 A _j vs event plane
	Di-jet	PRL 105 (2010) 252303 Momentum imbalance	ATLAS-CONF-2015-052 p _T dependence	PRL 111, 152301 (2013) Jet v ₂
(Boson-jet correlation	ATLAS-CONF-2012-119 Z-jet	CMS-HIN-13-006 Gamma-jet in PbPb	CMS-HIN-13-006 p _T dependent gamma-jet
New 2 PbPb	2015 5TeV dataset	CMS-HIN-16-005 Di-b-jet correlation	CMS-HIN-15-013 Z-jet correlation	CMS-HIN-16-006 Jet spiliting
		1-Sep-16	Yongsun Kim	12 CMS

1. Jet quenching in Boson-jet pair

2. Momentum imbalance in di-jet

PRC 84 (2011) 024906	PLB 712 (2012) 176	ATLAS-CONF-2015-021
Momentum imbalance	p _T dependence	A _j vs event plane
PRL 105 (2010) 252303	ATLAS-CONF-2015-052	PRL 111, 152301 (2013)
Momentum imbalance	p _T dependence	Jet v ₂
CMS-HIN-16-005 Di-b-jet correlation		

3. Momentum re-distribution

JHEP 1602 (2016) 156JHEP 01 (2016) 006CMS-HIN-15-011Jet-track correlationMissing vs jet RDependence on Aj

4. Jet hadronization (fragmentation)

PLB 730 (2014) 243	PRC 90 (2014) 024908	JHEP 10 (2012) 087
Jet shape	dN/dz (pT > 1GeV)	dN/dD(ξ) (p _T > 4GeV)
PLB 739 (2014) 320-342 dN/dD(ξ)	ATLAS-CONF-2015-055 dN/dD({;) (pp referece)	

5. Jet splitting

R_{AA} is skipped...

1. Jet quenching in Boson-jet pair

5. Jet splitting

1. Jet quenching in Boson-jet pair

5. Jet splitting

1. Jet quenching in Boson-jet pair

5. Jet splitting

1. Jet quenching in Boson-jet pair

5. Jet splitting

Before moving to the results...

A series of evolution in UE background energy subtraction technique

- **~2010)** UE background estimated from the average in η ring
- **~2012)** Flow component taken in account
 - CMS : Background ρ estimated from event training and Voronoi sectioning
 - ATLAS : Data-driven correction for modulation

~2016) Constituent Subtraction^[1]

- background ρ, ρ_m from kT clustered soft jets
- particle-by-particle 4-vector subtraction
- first used by ALICE for jet shape study and in CMS for jet splitting study

[1] Berta et al, JHEP 1406 (2014) 092

1. Previous results of boson-jet correlation

Most direct measurement of jet quenching via boson-jet

1. Z-jet @ 5.02 TeV

- Slightly narrower $\Delta \Phi$ distribution in central PbPb collision than pp reference
- Jet quenching is in similar level with gamma-jet result in 2.76TeV
- Demonstrated the utility of Z boson for the quantitative study of jet quenching

2. Di-jet results

Di-jet momentum imbalance study

- ATLAS unfolded jet resolution effect in x_J (= p_T^2 / p_T^1) and found a peak at $x_J \sim 0.5$ for the central collisions
- di-jet imbalance vs p_T^{leading} provides constrains in quenching models

2. Di-jet results

- Correlation with event plane

- Positive v2 for inclusive jets and the excess of momentum imbalance in out-of-plane
- The results supports the intuitive picture of the path-length dependence of energy loss : Longer path → more energy loss and large fluctuation

2. Di-b-jet results in PbPb

- The first measurement of flavor identified di-jet correlation in AA
- Similar size of momentum imbalance with inclusive dijets
- Provides inputs to the modelling of quark-mass and flavour dependence of queching

2. Di-b-jet results in PbPb

- The first measurement of flavor identified di-jet correlation in AA
- Similar size of momentum imbalance with inclusive dijets
- Provides inputs to the modelling of quark-mass and flavour dependence of queching

3. Chase of the missing energy (1/3)

The devil is in the details! Hunting for the missing energy dissipated by jet quenching in several aspects

Track p_T are projected to the di-jet axis

Distributions depends on jet R and centrality

However, when integrated they are all balanced

3. Chase of the missing energy (2/3)

• The devil is in the details! Hunting for the missing energy dissipated by jet quenching in several aspects

- Jet shape measured

3. Chase of the missing energy (3/3)

• The devil is in the details! Hunting for the missing energy dissipated by jet quenching in several aspects

4. Fragmentation function

ATLAS-CONF-2015-055

Constituents of jets in PbPb

- more soft particles (z < 0.02)
- less intermediate p_{T} particles
- more harder particles (z > 0.2)

Detailed measurement by ATLAS

- in bins of **centrality, jet \textbf{p}_{T} and \boldsymbol{\eta}**
- Fully unfolded jet $\ensuremath{p_{\text{T}}}$
- Gradual evolution of FF observed

5. Analysis with sub-jets in a jet

Jet splitting Observable :
$$z_g = \frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}}$$

Why interesting?

Hard branching delivers information in early stage of quenching (Vitev's talk on Wed)

New Jet algo : Grooming with SoftDrop

- Removes soft divergences and remaining backgrounds
- This is the first anlaysis using this method in Heavy Ion research
- Grooming and sub-jet finding is done simultaneously

T,jet

5. Jet splitting result at 5.02TeV

Compared to pp reference, the two subjets are more imbalanced in central PbPb collisions. The modification is less conspicuous for higher p_T .

5. Jet splitting result at 5.02TeV

And even more in PbPb compared to pp

_.

5. Measurement of neighboring jets @ 2.76TeV

Motivation

- Search for two jets originated from the same parton shower, in annulus ΔR=(0.5-0.8)-1.6
- Two jets are thought of as trasversing the same path length in the medium, so isolate the size of fluctuation in energy loss

Observable :

$$R_{\Delta R}(E_{\rm T}^{\rm test}, E_{\rm T}^{\rm nbr}) = \frac{\sum_{i=1}^{N_{\rm jet}^{\rm test}} N_{\rm jet,i}^{\rm nbr}(E_{\rm T}^{\rm test}, E_{\rm T}^{\rm nbr}, \Delta R)}{N_{\rm jet}^{\rm test}(E_{\rm T}^{\rm test})}$$

 The probability to find a neighboring jet near a test jet

5. Measurement of neighboring jets @ 2.76TeV

Clear dependence of suppression on centrality, but independent of the test jet E_T

The suppression is decreasing with increasing neighbor jet E_T

Summary

- The heavy ion jet results at 2.76TeV and 5.02TeV from CMS and ATLAS collaboration were reviewed
- The pPb nuclear modification factor of inclusive, b- and c-jet confirms that the strong suppression in PbPb collision is attributed to the hot medium effects. Along with di-jet results, they provide constrains for nPDF in anti-shadowing region
- In PbPb, ~20 literatures indicate the significant energy loss of high p_T jets and give quantitative clues where the lost energy are dissipated
- The new reuslts from LHC Run II phase arrived. Z-jet result at 5TeV proved the role of Z for more elaborate analyses in near future. Di-b-jet correlation results gave an insights of quark mass dependence
- CMS and ATLAS investigated the jet splitting nature using different analysis techniques in different distances within jet-pair
- There are tons of new results from brand new data @5TeV are waiting for us, so stay tuned!

BAKCUP

Latest jet finding algorithm in CMS

Studies of jet splitting

In antenna picture, the activity of (de)coherent emitters is affected by the temperature of medium

Jet Grooming with SoftDrop

- Removes soft divergences and remaining backgrounds
- This is the first anlaysis using this method in Heavy Ion research
- Extracts 2 branchs

bservable :
$$z_g = \frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}}$$

Phys.Lett.B 725 (2013) 357–360 $1_{\text{med}}r$. med^{T} . 25 2 coherent emitters 1 coherent emitter Color disconnected Color disconnected Soft Drop condition $z > z_{\rm cut} \, \theta_{\uparrow}^{\beta}$ threshold exponent We use $\beta = 0$ and $z_{cut} = 0.1$ $\min(p_{T,1}, p_{T,2})$ All soft emissions are removed Equivalent to modified Mass Drop Collimated iet Two hard structures + softer 2nd structure

Yongsun Kim

Unfolding of di-jet xJ distribution

- ATLAS updated the di-jet correlation result with 0.14 nb⁻¹ @2.76TeV
- $x_J (= p_T^2 / p_T^1)$ is fully unfolded and found a peak at $x_J = 0.5$ for the central PbPb collision
- The x_J distribution gets narrower for higher p_T pair indicating $\Delta E/E$ decrases with jet p_T

Jet results in pPb at 5.02TeV

1. J	et R _p	_{A,} ar	$d R_{CP}$
------	-------------------	------------------	------------

PLB 748 (2015) 392-413	EPJC 76 (2016) 372
Jet R _{pA}	Jet R _{pA}
CMS-HIN-15-012	PLB 754 (2016) 59
c-jet R _{pA}	<mark>b-jet R_{pA}</mark>

2. Charm and bottom tagged jets

EPJC 74 (2014) 2951	CMS-HIN-16-003
η_{dijet}	η _{dijet} updated (+pp data)

3. Di-Jet and nPDF

ATLAS-CONF-2015-022 Fragmentation function

CMS-HIN-15-004 Fragmentation function