Measurements of the elastic, inelastic and total pp cross sections with the

ATLAS, CMS and TOTEM detectors

Simon Stark Mortensen

Niels Bohr Institute
University of Copenhagen

ISMD2016
August 30, 2016

Outline:
@ Physics motivation.
@ Inelastic cross section at /s = 13 TeV with the ATLAS and CMS detectors.

@ Elastic, inelastic and total cross sections at /s = 8 TeV with the ATLAS and TOTEM
detectors.
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Physics motivation

@ The elastic (G¢)), inelastic (Ginel) and total (Giot) pp cross sections are fundamental
quantities which cannot be calculated with perturbative QCD.

@ Regge theory provides a description but data is needed to constrain models.

@ Gt gives the upper bound on any pp process and is seen to rise with collision energy.

@ A substantial fraction of Ging is diffractive processes. Measurement of Gjne Will constrain
models also for cosmic-ray shower in the atmosphere.
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Inelastic cross section measurement at /s = 13 TeV
with ATLAS and CMS

arXiv:1606.02625
CMS-PAS-FSQ-15-005
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Inelastic cross section - Detector layout

@ Strategy: Measure the inelastic cross section in a fiducial region and extrapolate to full
phase-space with input from theoretical models.
o The better detector coverage, the smaller extrapolation uncertainty.

@ The fiducial ojne| is the number of observed events corrected for background, pile-up,
efficiencies and luminosity.

ATLAS: CMS:
@ MBTS plastic scintillators at @ HF calorimeter of iron absorbers and quartz fibers
z==43.6m covering 3.0 < n| < 5.2.
covering 2.07 < |n| < 3.86. @ CASTOR calorimeter of tungsten and quartz

covering —6.6 <m < —5.2.
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Inelastic cross section - Tuning models (ATL

)

Dlala 2015 [ATLASI ]
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@ The inelastic cross section is the sum of the
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@ The fraction of single-sided events, Rsg, is ]

related to fp and used to tune fp in the models. 008 E
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@ Using the fp-tuned models, the hit multiplicity in ¢l ™ ™ 7T e
the MBTS for the models are compared to data: [ byl o010 - NER
o The DL (Donnachie-Landshoff) pomeron flux EPOS LHC - QGSUETI
model is best. PSS =

e The EPOS LHC and QGSJET-Il models
(developed for cosmic-ray showering) are worst.

ATLAS
13 TeV, 60.1ub™"

@ CMS checks that models predict correct ratio of il ‘  Sholersided selecton
cross sections between the HF-only and the ) ’
HF+CASTOR phase-space regions.

MC/data
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Inelastic cross section - Extrapolation

CMS:

@ The average of the model extrapolation factors is used to go from fiducial to full phase-space
cross section.

@ Maximum difference between models is used as systematic uncertainty.
ATLAS:
@ A precise (and independent) measurement of Gine at /s = 7 TeV is used:

6
ofid L (GALFA fid oM (& <1075)
i + Gj
inel = Ojnel ( inel, 7 TeV — “inel, 7TeV) Gmg’ 7TeV(§ <5x%x10™ 6)

@ The difference between Pythia8 DL and Pythia8 MBR is used as systematic uncertainty.

Simon Stark Mortensen (NBI) Elastic, inelastic and total pp cross sections ISMD2016 August 30, 2016 6/17



Inelastic cross section - Results

CMS: oheHF —65.8 4 0.8(exp.) £ 1.8(lum.) mb

ohdHF+CASTOR g6 9+ 0.4(exp.) £2.0(lum.) mb
Ginel =71.3£0.5(exp.) 2.1(lum.) £ 2.7(ext.) mb

ATLAS: ol =68.140.6(exp.) +1.3(lum.) mb
Ginel =79.3 £0.6(exp.) = 1.3(lum.) £ 2.5(ext.) mb
100 CMS preliminary 13 TeV
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'B' 95? QGSJETII-04 A PHOJET v P6 z2*
90 A P8 Monash13 ¢ P8DL < P8 MBR
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. fid. HF 85 ; updated vglue
ATLAS 6f9, and CMS 6, b s .
have same fiducial region and E Avo
are directly comparable. 75, Ay
F v ATLAS o Ny
F L updatedvalue O
70 o +
6sf i
60}
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£>10° g, >107org >10° Sinel
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Elastic, inelastic and total cross sections measurement at /s = 8 TeV
with ATLAS and TOTEM

Phys. Lett. B (2016) 158
Phys. Rev. Lett. 111, 012001 (2013)
Nucl. Phys. B 899 (2015) 527-546
CERN-PH-EP-2015-325
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Elastic analysis - Strategy

@ From the optical theorem we get:

5 _ 16m(hc)® 1 dNe p= Re[Fa (1) (ATLAS)
tot 1+p2 L dt l=o Im [Fei(1)]
. 16m(hc)® 1 dNg
. _ TOTEM).
equiv. Giot 14+p2 Ng+ Npg dtf lt=0 (To )

@ The four-momemtum transfer t is calculated as
t=—(px0")2

where the scattering angle 6 is calculated from the proton trajectories
and p is the beam momentum.

K8

o Data are taken in runs with low pile-up (u < 0.1) and high §* collision optics since tmin o< B
e [* =90 m results from ATLAS (one dataset) and TOTEM (two datasets).
e B* =1 km results from TOTEM (one dataset).
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Elastic analysis - Detector layout

@ ATLAS and TOTEM use tracking detectors in Roman Pots at z ~ 230 m to approach
outgoing beams in vertical direction.
o ATLAS uses 10 x 2 orthogonal layers of scintillating fibers giving ~ 30 um tracking resolution.
o TOTEM uses a stack of 10 silicon strip detectors giving ~ 11 um tracking resolution.
@ In addition, TOTEM has two tracking telescopes:
e T1is a cathode strip chamber at z = £9 m covering 3.1 < |n| < 4.7.
e T2is based on gas electron multiplier chambers at z = +13.5 m covering 5.3 < || < 6.5.
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Elastic analysis - event selection

— =20 . —
g cut 2 l I i 10
o Elastic events are selected when all four = 40 - /|
detectors in an arm have a track. 2 s | 103
S I 3
@ The tracks are required to fulfill certain —60 |~ o 1|3
correlations between inner-outer stations M F -] e
and between left and right side. -80 - N
@ ATLAS B* =90 m: 3.8 M elastic events. I | 1
~100 B — 10
o TOTEM B* =90 m: 0.65 M elastic events. [ l 1 .
o TOTEM B* =1 km: 0.35 M elastic events, ~ —120 ——+——————— 10°
O B 0.35 M elastic events 0 % o0 6 "0

6;R  [urad]
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Arm 1 . Arm 2
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Elastic analysis - Experimental effects

@ Background comes from beam halo, single

diffractive and central diffractive protons. 8 orf 3

. X . . ,g r ATLAS Simulation q

@ Fraction is < 0.12 % estimated from antigolden g o8- ; JesTV

topology. ost- E
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@ Detector acceptance is highly dependent on o m +L_‘ ]

detector distance to the beam and beam divergence.  of =

g E

@ Found from simulation tuned to data. H % . \\\\\\\\\\\\\\\\i
2 oeh am

e t-resolution is influenced by detector resolution and % <& St E

beam divergence. e — \\\\\\\\\\\\i

. . . 5 oo Am E

@ Relative t-resolution is better than 10 % and gy S \

0 005 0.1 015 0.2 025 0.3 0.35
-t [GeV?]

corrected for by unfolding.

@ Track reconstruction inefficiency is data driven.
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Elastic analysis - Theoretical prediction

@ The differential elastic cross section is a superposition of the strong interaction amplitude Fp
and the Coulomb amplitude F¢ added in quadrature giving

doel G4(t)
dt [t|2

°TG‘<I‘> [sin(0(£)) + pcos(0(1))] -exp (73 : )

08 (1+p2) -exp(—Bt]) - =

@ The corrected differential cross section is fitted with Gy, and B as free parameters.

@ ATLAS fit-range: 0.014 < |t| < 0.1 GeV2. ~ Simulation _
° G( t) (1)(1‘) P fixed - Differential elastic cross section
’* 7 .- E‘m;_ - doelastlc/d‘
o TOTEM B* =90 m fltérange. 512005— _______ Coutomb torm
0.01 < |t] < 0.2 GeV*= (1. dataset) g

Intert t
0.02 < |t| £ 0.2 GeV? (2. dataset) % nierierence ferm

o TOTEM neglects the Coulomb and
interference terms.

o TOTEM B* =1 km: :
6-107* < |t| < 0.2 GeV>. wop,

"""" Nuclear term

1 Il 1
10° 10? 10"
o o H:{pﬁ)’ [GeV?]

Giot = 100 mb, B=18 GeV 2, p=0.13
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Elastic analysis - Measurement of N, (TOTEM)

@ TOTEM measures simultaneously the elastic and inelastic rate and is hence independent of
luminosity.

@ The inelastic rate is determined with the T1 (3.1 < |n| <4.7) and T2 (5.3 < |n| < 6.5)
telescopes, detecting about 95% of the inelastic rate.

@ The strategy is similar to the CMS and ATLAS inelastic cross section measurement.
@ Events are triggered by the T2 telescope and corrected for experimental effects.
@ Uncertainty from extrapolation of fiducial region is dominating ("Low mass diffraction”).

Source Correction Uncertainty  Effect on
Beam gas 0.45% 0.45% all rates
Trigger efficiency 1.2% 0.6% all rates
Pileup 2.8% 0.6% all rates
T2 reconstruction 0.35% 0.2% Ninet> Nyi<e.5
“T1 only” 1.2% 0.4% Ninel» Niyl<6.5
Internal gap covering T2  0.4% 0.2% Ninet» Niyi<6.5
Central diffraction 0% 0.35%  Ninel» Niyi<6.s
Low mass diffraction 4.8% 2.4% Nipel
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Elastic analysis - Results

; ; . _ O _14p°
@ Gg is the integral of the nuclear part:  Gg = B Ten(ho)

@ Ginel = Otot — Oel-

ATLAS (B*=90m) TOTEM (B* =90m) TOTEM (B* =1 km)

Ctot 96.07+£0.92 101.7+2.9 102.9+2.3
Gel 24.33+0.39 2714114 -
Ginel 71.73+£0.71 7474+1.7 -

@ The total cross section is still rising with 250

= r ™

E F e ATLAS 102

energy. o [ =« TOTEM 100
200j s Lower energy pp s: + ¢

@ The difference between ATLAS and E 2 ooy o “
TOTEM B* = 90 m corresponds to 1.9, ool — ComerE ez Toos Taoe T 700 T o

[ -eee- 127 - 1.75 In(s) + 0.14 In(s)

@ Using B* = 1 km data, TOTEM also r
measured 1%

p=0.12+0.03 07

Model extrapolation from lower energies: "
\s [GeV]
p = 0.140+0.007 _ @
(fit not updated with latest ATLAS result)
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Elastic analysis - Non-exponential slope

@ Hints of a slight deviation from an exponential fall-off of the elastic nuclear amplitude was
reported at ISR and SppS, but not at the Tevatron.

o TOTEMused 2(t)=92| _ exp (E,N:bo b,-t’)

to exclude a purely exponential form with

more than 7¢c!

@ This approach was impossible for =

ATLAS as the t-dependent

systematic uncertainties are too

large.

o Average beam energy
uncertainty dominates.

@ ATLAS uses a larger
uncertainty than TOTEM.

. ref

do/di - ref

o An official value will be available ~0.05 - L
0 0.02 0.04 0.06

later this year.

0.08 0.1 0.12

Np  Z/ndf Giot

1 117.5/28 (101.7+2.9)mb

2 203/27 (101.5+2.1)mb

3 255/26 (101.9+2.1)mb
- 006 T T ]
j PR ]
‘s 0041 4 syst. unc. band without normalisation — Np =3 B

014 016 018 0.2
I [Gev?]

@ ATLAS has tested different B-parametrizations giving an RMS of 0.28 mb on Git.
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@ The inelastic cross section at /s = 13 TeV was measured by a MC extrapolation from the
fiducial region:
Ginel =79.3 2.9 mb (ATLAS)
Ginel =71.3+3.5 mb (CMS)
The largest uncertainty contribution comes from the extrapolation and the luminosity
determination.

@ The elastic, inelastic and total cross sections at /s = 8 TeV have been measured by ATLAS
and TOTEM exploiting the optical theorem:

ATLAS (luminosity-dependent): TOTEM (luminosity-independent):
Giot =(96.07+£0.92) mb Ot =(101.7£2.9) mb
Gol =(24.331+0.39) mb Gol =(27.1+1.4) mb
Ginel =(71.73£0.71) mb Ginel =(74.7£1.7) mb

o TOTEM has excluded a single-exponential shape of dcg/dt with more than 7c.

@ TOTEM also measured Gy = (102.9 +2.3) mb and p = 0.12+0.03 with the * =1 km
dataset.
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Backup slides



Backup - ATLAS test of nuclear slope parametrization

@ ATLAS has tried different parametrizations for the nuclear slope.

@ The upper limit of the fit range was increased to |t| = 0.3 GeV? in order to increase the
sensitivity of additional parameters.

@ The quality of the fit is increased due to the higher number of free parameters.

Ttot[Mb] Model
Nominal 96.07 & 0.86 fN( )=

Ct? 96.16 + 0.80  fn(t) = Ep+2) s e Bt/2-Ct7/2

cy/—t 96.40 +£0.80 fn(t) =(p+1) ‘7“’*6*31&/2 e/ E2m)
SVM 96.16 £ 0.80  fn(t) = p"tote*Bnt/? + i ot e~ Brt/2

BP 06.81 £ 0.95  fu(t) =i |G2(t)vAc B2y e#/Te~ Dt/?}

BSW 96.67+0.99 Ref,(t ) =ci(ty +1)e 2 Imfy(t) = ea(ty +t)e 018/2




Backup - Results for the nuclear B-slope

@ ATLAS measurement: B = 19.7340.24 GeV 2

o TOTEM measurement: B=19.940.3 GeV 2

@ Pre-LHC expectations was a linear evolution of the B-slope with In(s)
@ LHC measurements of the B-slope favours a second In?(s) term.
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(fit not updated with latest ATLAS result)



Backup - t-reconstruction methods

@ The scattering angle is calculated from the proton transverse positions far from IP:
u M1 M\ (u*
= , u=(xy).
(eu) (M21 Mo ) \ 65 (x.y)

* uap—Uc
u— )
Miza+ M2 c

@ Subtraction method:

X,y
@ Local angle method method:

ex A ex C
0 =—"" "~ 9% as for subtraction
X Mppat+Mpc' Y

@ Local subtraction method:
241 237
M's xear.s — Mg xear.s

* * .
.S = —oai =57 o 0 S—=AC, 6 asforsubtraction
M11,s ’ M12,s - M11,s ’ M12,s

@ Lattice method:

0y =M, - x+ My, -6, , 6 as for subtraction



Backup - Beam optics corrections

@ The beam optics has direct influence on the t-reconstruction through the transport matrix.

o Different t-reconstructions gives different results
= the initial design optics needs modifications.

@ Both TOTEM and ATLAS use elastic data to constrain an optics fit including magnet
strengths whereby an effective optics in obtained.

T 20 T T T T T RN =
S .f ATLAS NE
= 15 =
= 15F * E
< 100 =8 TeV, 500 b’ %} E
_ 50 =
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L E u
yo _ M 5E- =
Y - M1Rz 105_ o Design optics _E
; 4 o Effective optics é
-15 —
F — Linear fit ]
-20F; M| |_:
200

Cova Lo wn by u a1y PRI B L
-200 -150 -100 -50 O 50 100 150
6;(237m, subtraction) [urad]



Backup - RP alignment

ATLAS alignment ATLAS distance
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