

Current and future programs at RIBF

H. Sakurai RIKEN Nishina Center/Dept of Phys., Univ. of Tokyo

RI Beam Factory

RI Beam Factory

World's First and Strongest K2600MeV Superconducting Ring Cyclotron

400 MeV/u Light-ion beam 345 MeV/u Uranium beam

World's Largest Acceptance 9 Tm Superconducting RI beam Separator

~250-300 MeV/nucleon RIB

Primary Beam Status and Plan

1

0.01

06

07

08

09

10

vear

11

12 13 14

15

RF cavity of RRC replaced by new one to increase a transmission efficiency

RI Beam Production at BigRIPS Since 2007 Kubo et al.

Challenges at RIBF

Shell Evolution : magicity loss and new magicity

Dynamics of new "material" : Neutron-skin(halo)

R-process path: Synthesis up to U

EOS: asymmetric nuclear matter SN explosion, neutron-star, gravitational wave

RI Beam Factory

Past and Current Programs with DALI2 at ZD

New "Magicity" of N=34 in the Ca isotopes

Shell Evolution And Search for Two-plus energies At the RIBF (SEASTAR) – a RIKEN Physics Program

Not only gamma, but Interesting Ones

Deformed Halo Nuclei Ne-31 and Mg-37

PF-reaction-induced spin-aligned RI beams

(1) Q(43mS) measurement

structure of $N \sim 28$ nuclei

R. Chevrier et al., Phys. Rev. Lett. 108, 162501 (2012)

(2) New method for high spin alignment Two-step PF + dispersion matching

Y. Ichikawa, H. Ueno et al., Nature Phys. 8, 918 (2012)

Decay Spectroscopy at RIBF

EUroball-RIKEN Cluster Array

U-beam intensity ... <u>x 50 times</u>

- 0.2 pnA → 10 pnA

Gamma-ray efficiency ... <u>x 10 times</u>

EURICA Collaboration

Si-strip: IBS-RIKEN

- 4 Clover detectors (Det. Effi. ~1.5% at 0.662 MeV)

 \rightarrow 12 Cluster detectors (Det. Eff. ~ 15 % at 0.662MeV)

Beam time x 40 times

- 2.5 days (4 papers) → 100 days ... (160 papers)

Past and Current Programs via Decay Spectroscopy

beta-decay Half-Lives of 110 Neutron-Rich Nuclei across the N=82 Shell Gap: Implications for the Mechanism and Universality of the Astrophysical **r** Process

G. Lorusso et al. Phys. Rev. Lett. 114, 192501 (2015)

BRIKEN: beta-delayed neutron detection (He-3)

Very high efficiency neutron detector \rightarrow Survey of beta-delayed multi-neutron & T1/2 2016-

He-3 detector system

ORNL-JINR-GSI-UPC-RIKEN 182 counters

Table 1: 3 He tubes available within the BRIKEN Collaboration.

Owner	Pressure	Size		Number of
	(atm)	Diameter	Eff. Length	Counters
		(inch/cm)	(inch/mm)	
GSI	10	1 / 2.54	23.62 / 600	10
JINR	4	1.18 / 3.0	19.69/500	20
ORNL	10	2 / 5.08	24/609.6	67
ORNL	10	1 / 2.54	24/609.6	17
RIKEN	5.13	1 / 2.54	118.1/300	26
UPC	8	1 / 2.54	23.62/600	42
Total				182

Day-One Campaign Experiments at SAMURAI: **Explore** Neutron Drip Line Established only up to Z=8 (O) Halo Structures New/Lost Magic Numbers **Exotic Unbound Resonances** --- Physics at the bound limit ΑI Mg Na Ne 100 1n-halo known B 2n halo known / N=16 ²⁵0²⁶0 Be 2n/4n halo(skin)? $^{19}B^{/} ^{22}C$ He N=8Н Coulomb Breakup of ¹⁹B and ²²C, Nakamura et al. N=2Study of ¹⁸B,²¹C, and excited states of ¹⁹B,²²C, Orr et al. Structure of Unbound Oxygen Isotopes ²⁵O,²⁶O, Kondo et al.

US-Japan Initiatives for EOS at $\rho \sim 2\rho_0$

Time Projection Chamber installed in the SAMURAI magnet to detect pions, charged particles at $\rho{\sim}2\rho_0$

Supported by USA DoE funding (\$1.2M), and Japanese Grant-in-Aid for Scientific Research on innovative areas (\$1.3M).

Exothermic double-charge exchange reaction

~ 1 mrad

SLOWRI Device for Trap Experiments

Wada, Sonoda et al.

3)Resonance Ionization Spectroscopy Parasitic RI beam production, spin, moments, radii...

1)Optical spectroscopy

Takamine et al, PRL 112(2014)162502

2)Mass measurements of short-lived nuclei

Mass spectroscopy at "Rare RI Ring" 2015-

Construction started in April 2012! Ozawa, Wakasugi, Uesaka et al.

Dedicated to mass measurements r-process nuclei Low production rate (~1/day) Short life time (<50ms)

Key technologies: Isochronous ring $\Delta T/T < 10^{-6}$ for $\delta p/p = \pm 0.5\%$ Individual injection triggered by a detector at BigRIPS efficiency ~ 100% even for a "cyclotron" beam

Schedule: 2015 Commissioning run 2016~ Mass measurements of RI

Commissioning for "Rare RI Ring" June 2015

Commissioning run with a primary beam of Kr-78

Single particle injection and extraction scheme was confirmed.

Schottky frequency spectrum was successfully obtained

for a single ion. A single ion was observed to be accumulated for ~ 4 seconds.

SCRIT Facility for e+RI scattering

 $-> 10^{29}/cm^2/s$

CNS-RIKEN: OEDO Project

Shimoura et al

Nucleon transfer reactions (10A – 50A MeV) Pair transfer / Cluster transfer (10A – 20A MeV) Deep inelastic collisions (incomplete fusion) (5A – 30A MeV) Fusion reaction (~ 5A MeV) Coulomb excitation reactions for low-energy gamma rays (~ 50A MeV)

Transmission and intensity

Typical example of ¹³²Sn

based on actual intensity in experiment by using 345 AMeV 30pnA U primary beam (Apr. 2015)

Intensity @ F3 (Apr. 2015)	2.5×10 ⁶ [pps]	
50 \pm 5 AMeV @ S0	1.3×10 ⁶	
20 ± 3 AMeV @ S0	9.5 × 10 ⁵	
10 ± 3 AMeV @ S0	7.5×10 ⁵	
5 ± 1 AMeV @ S0	1.7 × 10 ⁵	

cf. 1.4 × 10⁴ pps ¹³²Sn in CARIBU proposal

Operation will start in 2017

Summary

- RIBF has started delivering intense RI beams since 2007.
- All of experimental devices have been completed.
- Bunch of data are being produced for nuclear structure study as well as nuclear reactions.
- Before FRIB, FAIR and RISP starting, RIBF has made efforts to access exotic nuclei as many as possible.
- The OEDO project will start to deliver decelerated in-flight beams in 2017 to promote science with low-E beams.
- The accelerator upgrade plan has been discussed to compete with FRIB, FAIR and RISP.