

# Particle correlations and the ridge in p-Pb collisions in the LHCb experiment

Mariusz Witek\* On behalf of the LHCb Collaboration

\*Institute of Nuclear Physics PAN, Kraków, Poland

29-08-2016

M. Witek - ISMD2016

# Outline

*LHCb* ГНСр

- Motivation
- The LHCb experiment
- Pb-p and p-Pb data taking
- Analysis method
- Data selection
- Results
- Summary

# Goal and motivation of the LHCb analysis



- Look for a long-range angular correlations on the near-side ("ridge" at  $\Delta \phi = 0$ )
  - observed in Pb-Pb collisions by the RHIC experiment
  - observed in Pb-Pb, p-Pb and p-p collisions by CMS, ATLAS and ALICE at central rapidities  $(|\eta| < 2.5)$
- Measure two particle angular correlations of prompt charged particles in the forward region
- Compare long-range correlations in both hemispheres (p-Pb and Pb-p) in relative and absolute activity classes
- The theoretical interpretation of the mechanism responsible for the ridge is still under discussion
- p-Pb collisions are important as a reference sample for Pb-Pb and interesting by themselves

Confirmation of the ridge correlations at large  $\eta$  and comparison of its magnitude for the two beam configuration provide new input to the theoretical understanding of the underlying mechanism

# The LHCb experiment



10 η

10 η

10 η

10

n

ALICE



Acceptance  $2 < \eta < 5$ 

Impact parameter resolution 20  $\mu$ m.

Momentum resolution  $\Delta p/p = 0.5 - 1.0\%$  (5-200 GeV/c)

Rich K- $\pi$  separation  $\epsilon(K \rightarrow K) \approx 95 \%$  miss ID  $(\pi \rightarrow K) \approx 5 \%$ 

Fully instrumented in the forward region.

LHCb experiment is dedicated to heavy flavour physics and searches for physics beyond SM, but it may provide:

- results on heavy ion physics in unique kinematic region
- complementary results to other LHC experiment



n

# p-Pb and Pb-p in LHCb



- p Pb
- $E_p = 4 \text{ TeV}, E_{Pb}=1.58 \text{ TeV}$
- Rapidity range: 1.5 < y < 4.4
- Sample used for the analysis 0.46 nb <sup>-1</sup>
  - Total collected 1.1 nb <sup>-1</sup>



Data collected in 2013

Asymmetric beams: nucleon-nucleon:  $\sqrt{s_{NN}} = 5 \text{ TeV}$ 

Center of mass system shifted by  $\Delta y=0.47$  into proton beam direction

Common rapidity range 2.5 < |y| < 4.4

- Pb p
- $E_{Pb}$ =1.58 TeV,  $E_p$  = 4 TeV
- Rapidity range: -5.4 < y < -2.5
- Sample used for the analysis 0.30 nb <sup>-1</sup>
  - Total collected 0.5 nb <sup>-1</sup>



### The p-Pb event





Typical pA collision in LHCb

- Multiplicity distributions p-p and p-Pb are comparable in LHCb acceptance
- Pb-p multiplicity is higher

# Analysis method

- Two particle correlations are measured for each activity class (defined later)
- 3 p<sub>T</sub> intervals [GeV/c]:
  - [0.15 1.0], [1.0 2.0], [2.0 3.0]
- Two particle correlation function binned ratio of signal and background.







Normalized yield of particle pairs. Combinations from the same event. Normalized yield of particle pairs. Combinations from different events (mix).

### **Data selection**



#### • Event selection

- One primary vertex (PV) with a position in luminous region ±3σ around mean interaction point (only 2% of interactions with more than one PV)
- Events with too small ratio between the number of clusters in EM calorimeter and in the VELO are rejected (reduction of beam-gas and secondary interactions with detector material)

#### • Track selection

- Select prompt particles (small IP with respect to PV)
- Charged particles reconstructed in full tracking system (before and after the magnet)
- Kinematic cuts: p > 2 GeV/c,  $p_T > 150 \text{ MeV/c}$  2.0 <  $\eta$  < 4.9

#### Corrections

- Apart from acceptance efficiencies the main effects are due to decreased quality of track reconstruction for high multiplicity events (high density in forward region)
- Fake tracks suppressed by multivariate classifier while secondary tracks by IP cuts
- Remaining effects are taken into account by per track weights depending on track purity and track efficiency

$$\omega(\eta, \phi, p_{\rm T}, \mathcal{N}_{\rm velo}^{\rm hit}) = (1 - \mathcal{P}_{\rm fake} - \mathcal{P}_{\rm sec}) / (\epsilon_{\rm acc} \cdot \epsilon_{\rm tr})$$

M. Witek - ISMD2016

# Data samples and event activity classes

#### • Data samples

- Minimum bias. Randomly selected minimum bias events
- High-occupancy. Events with > 2200 VELO hits
- Event activity classes. Hit multiplicity in VELO is a good probe of the global event multiplicity.
  - 5 relative event activity classes defined as fractions of hit multiplicity distributions of the minimum-bias samples. Separately for p-Pb and Pb-
  - 5 common absolute activity ranges. Bins for VELO hits in [2200, 3500]



### The ridge





M. Witek - ISMD2016

### The ridge







- Near-side ridge present in both configurations.
- Ridge in Pb-p more prononced.

# **Ridge evolution**



$$Y(\Delta\phi) \equiv \frac{1}{N_{\rm trig}} \frac{\mathrm{d}N_{\rm pair}}{\mathrm{d}\Delta\phi} = \frac{1}{\Delta\eta_b - \Delta\eta_a} \int_{\Delta\eta_a}^{\Delta\eta_b} \frac{1}{N_{\rm trig}} \frac{\mathrm{d}^2 N_{\rm pair}}{\mathrm{d}\Delta\eta \mathrm{d}\Delta\phi} \mathrm{d}\Delta\eta.$$

- To study the ridge evolution look at onedimensional projection on  $\Delta \phi$  integrated over  $\Delta \eta$  range 2.0 <  $\Delta \eta$  < 2.9 (i.e. excluding the jet peak)
  - Maximum in near-side is observed for  $1 < p_T < 2$  GeV/c
  - The away-side ridge increases with event activity and decreases towards higher  $p_T$
  - The correlation is stronger for Pb-p in the p-Pb ina given activity class (asymmetry effect)





# The ridge in common activity ranges



- 5 identical activity ranges for p-Pb and Pb-p configurations (VELO hits 2200-3500)
- $2.0 < \Delta \eta < 2.9$



- The away-side and near-side ridge appear to be only dependent on the activity in the direction of the measurement
- The strength of the near-side ridge in both hemispheres are compatible
- Increase of correlation strength with increasing event activity is seen

# Summary



- Two-particle angular correlations produced in pPb collisions at  $\sqrt{s_{NN}} = 5$  TeV have been measured for the first time in the forward region in the LHCb experiment
- The near-side ridge effect is observed for both p-Pb and Pb-p configurations and is most pronounced for  $1.0 < p_T < 2.0$  GeV/c range
- The correlation structures on the near side and on the away side grow with increasing event activity
- For a given total event activity the ridge is stronger in the Pb direction
- For identical absolute activity the observed long-range correlations are compatible in both hemispheres
- Analysis for p-p is ongoing



### Backup slides

# Event activity classes



| Relative           | p + Pb                                             |                                   | Pb+p                                                                                   |                                   |
|--------------------|----------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------|-----------------------------------|
| activity class     | range $\mathcal{N}_{\mathrm{VELO}}^{\mathrm{hit}}$ | $\langle N_{ch} \rangle_{\rm MC}$ | range $\mathcal{N}_{\scriptscriptstyle\mathrm{VELO}}^{\scriptscriptstyle\mathrm{hit}}$ | $\langle N_{ch} \rangle_{\rm MC}$ |
| 50 - 100% very low | 0 - 1200                                           | 18.9                              | 0 - 1350                                                                               | 29.2                              |
| 30 - 50% low       | 1200 - 1700                                        | 30.0                              | 1350 - 2000                                                                            | 47.4                              |
| 10 - 30% medium    | 1700 - 2400                                        | 42.8                              | 2000 - 3000                                                                            | 70.9                              |
| 0-10% high         | $2400 - \max$                                      | 63.6                              | $3000 - \max$                                                                          | 106.7                             |
| 0 - 3% very high   | $3000 - \max$                                      | 73.7                              | $3800 - \max$                                                                          | 126.4                             |

| Common absolute         | $\mathcal{N}_{\mathrm{VELO}}^{\mathrm{hit}}$ -range | p + Pb                            | Pb+p                              |
|-------------------------|-----------------------------------------------------|-----------------------------------|-----------------------------------|
| activity bin            | in $Pb+p$ scale                                     | $\langle N_{ch} \rangle_{\rm MC}$ | $\langle N_{ch} \rangle_{\rm MC}$ |
| Bin I                   | 2200 - 2400                                         | $62.8 \pm 6.6$                    | 64.4                              |
| $\operatorname{Bin}$ II | 2400 - 2600                                         | $68.4 \pm 7.1$                    | 67.0                              |
| Bin III                 | 2600 - 2800                                         | $73.7\pm7.6$                      | 76.4                              |
| Bin IV                  | 2800 - 3000                                         | $79.2 \pm 7.9$                    | 82.4                              |
| Bin V                   | 3000 - 3500                                         | $86.7\pm8.2$                      | 92.9                              |