Measurements of the production of prompt photons, jets and vector bosons + jets in pp collisions with the ATLAS detector

XLVI International Symposium on Multiparticle Dynamics (ISMD2016)

Seogwipo KAL Hotel, Jeju Island, Korea August 29th - September 2nd, 2016

Marisilvia Donadelli on behalf of the ATLAS Collaboration

University of Sao Paulo - Brazil

Measurement of the inclusive isolated prompt photon cross section in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector		JHEP 06 (2016) <u>005</u>	L = 20.2 fb ⁻¹
O	Study of inclusive isolated-photon production in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector	<u>ATL-PHYS-</u> <u>PUB-2015-016</u>	L = 6.4 pb ⁻¹
Ģ	Measurement of four-jet differential cross sections in $\sqrt{s} = 8$ TeV pp collisions using the ATLAS detector	<u>JHEP 12 (2015) 105</u>	L = 20.3 fb ⁻¹
*	Measurement of inclusive-jet cross-sections in pp collisions at sqrt(s) =13 TeV centre-of-mass energy with the ATLAS detector	<u>ATLAS-</u> <u>CONF-2016-092</u>	L = 3.2 fb ⁻¹
.	Measurement of W boson angular distributions in events with high transverse momentum jets with the ATLAS detector at $\sqrt{s} = 8$ TeV	paper not yet submitted	L = 20.3 fb ⁻¹
Ş	Measurements of the Production Cross Section of a Z boson in Association with Jets in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS Detector	<u>ATLAS-</u> <u>CONF-2016-046</u>	L = 3.16 fb ⁻¹

ATLAS Detector

Motivation

Prompt photons, jets and vector bosons + jets in pp collisions

Fheir production provide a fertile testing ground of perturbative QCD;

- Experimental measurements can be used to extract information on the proton PDFs;
- Frey are essential in aiding analyses of processes for which they are important backgrounds (Higgs boson studies and search for new phenomena).

Particle Level and MC

LO ME + PS

ALPGEN v2.14 + PYTHIA v6.427 using CTEQ6L1

SHERPA vI.4.1, v.1.4.0 using CT10

PYTHIA v8.165 using CTEQ6L1

Madgraph5_aMC@NLO+Pythia 8 CKKWL (@13TeV results)

NLO ME + PS

Madgraph5_aMC@NLO with FxFx Merging (+2 jets) (@13TeV results)

SHERPA 2.X (NLO 0,1,2 jets + LO 3, 4 jets) (@13TeV results)

Fixed order NLO

BLACKHAT+ SHERPA

Fixed order NNLO

 $V + \geq 1$ jet N_{jetti} NNLO (@13TeV results, became available recently)

Higher orders

30/08/2016

HEJ (W≥ 2 jets)

ISMD 2016 - M.Donadelli

Isolated Prompt Photons

Differential cross sections from data and JetPhox

pb/GeV

ADE DE STO RESIDADE DE STO REFERENCIA

 $\boldsymbol{\eta}$ range split into 4 bins

 $d\sigma/dE_{\rm T}^{\gamma}$ for 25 < E_TY < 1500 GeV

systematic uncertainties

 $\stackrel{\text{\tiny{Gamma}}}{=}$ energy scale (~1%) dominates the high-E_T region

uncertainty on the correlation in the background $(\pm 10\%)$ dominates at low-E_T.

```
statistical uncertainty: I-2 % (except high ET bins)
```

photon isolation (to avoid contribution of photons from neutral-hadron decays):

 $E_{\rm T}^{\rm iso} \equiv \sum_{i} E_{\rm T}^{i} < E_{\rm T}^{\rm max}$ with the sum over the particles, except the photon, inside a cone

 $\Delta R=4$

centred on the photon in the η - Φ plane

 $E_{\mathrm{T}}^{\mathrm{iso}} < 4.8 \ \mathrm{GeV} + 4.2 \times 10^{-3} \times \mathrm{E}_{\mathrm{T}}^{\gamma}$

JetPhox describes shape of data well over 10 orders of magnitude in cross-section.

First measurement of photon production with $E_T^{\gamma} > I$ TeV.

JHEP 06 (2016) 005

Ratio of JetPhox and PeTeR CT10 to 8 TeV data

JHEP 06 (2016) 005

 η range split into 4 bins;

uncertainties:

statistical+systematic

Theory / Data 1.1 1.1 1.1 0.9 8 0 8 Data TLAS **ATLAS** ATLAS $0 \le |\eta^{\gamma}| < 0.6$ $0.6 \le |\eta^{\gamma}| < 1.37$ $\sqrt{s} = 8 \text{ TeV}, 20.2 \text{ fb}^{-1}$ Theory Data 2012 • $0 \le |\eta^{\gamma}| < 0.6$ 0.9 08 0.8 $0.0 \le \ln^{\gamma} l < 1.37$ 0.7Ē 0.7 ▲ 1.56 ≤ \ln^{γ} l < 1.81 0.6F 0.6E 0.5<u>⊦.</u> 30 0.5Ľ. 30 1000 Ε_T [GeV] 200 1000 Ε_T [GeV] 200 100 100 ... Lumi Uncert. NLO: Theory / Data 1.7 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.2 Data TLAS ATLAS PETER CT10 $1.56 \le |\eta^{\gamma}| < 1.81$ $1.81 \le |\eta^{\gamma}| < 2.37$ 1.3⊧ - JETPHOX CT10 1.2 ~ 1.1 – 1 – 0.9 0.8 3.0 0.7 0.7 0.6 0.6 0.5 0.5<u>- .</u> 1000 Ε_τ [GeV] 100 200 1000 Ε_T [GeV] 100 200

Comparison to improved NLO QCD calculations using **PeTeR:** resummation of QCD threshold logarithms at NNNLL and large electroweak Sudakov logarithms

- improved description of the data: PeTeR vs JetPhox;
- $\frac{1}{2}$ reduction of the theoretical uncertainty: ~ 20% smaller than in NLO QCD (JetPhox).

Inclusive production of isolated photons at 13 TeV

background subtraction based on

ATL-PHYS-PUB-2015-016

Four-jet production at 8 TeV

HEJ shows trends similar to those of Herwig++ at higher values of m4j.

IHEP 12 (2015) 105

well described by Pythia;

Herwig++ gets worse with increasing m4j, consistently overestimating the two ends of the m_{2i}^{min}/m_{4i} spectrum;

MadGraph+Pythia provides a very good description, with a flat ratio for all the m_{4i} cuts;

Four-jet production at 8 TeV

Unfolded inclusive jet cross-section at 13 TeV

ATLAS-CONF-2016-092

- six jet rapidity bins;
- NLO pQCD using CT14 PDF set corrected of for non perturbative and electroweak effects;
- extended range from 100 GeV to \sim 3.2 TeV!

SIDADE DE

NN

Ratio NLO pQCD to unfolded inclusive jet cross-section

- six jet rapidity bins;
- NLOJET++ with CT14, MMHT 2014, NNPDF 3.0 set corrected with nonperturbative and electroweak corrections;
- no significant deviation is seen;
 - NNPDF 3.0 overestimates the cross-section for the last two |y| bins, however it's within uncertainties.

ATLAS-CONF-2016-092

Ş

Ş

Ş

Ratio NLO pQCD to unfolded inclusive jet cross-section

ATLAS-CONF-2016-092

- six jet rapidity bins;
 - NLOJET++ with CT10, HERAPDF 2.0, ABM12 with nf=15 corrected with nonperturbative and electroweak corrections;
- no significant deviation is seen;
 - disagreement with **ABM12**, consistent with previous ATLAS 7 TeV measurement, observed for the first two |y| bins.

Vector Bosons + Jets

Collinear W production at 8 TeV

W + jets signal Analysis focus: contributions to W+jets processes o. $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$ ATLAS Preliminary Events / Data Leading Jet p_ > 500 GeV W+jets (ALPGEN ×0.71) from real W emission. at least one jet with $p_T^{jet} > 500 \text{ GeV}$; 📃 tī 200 Multijets achieved by studying events where a muon is Z+jets exactly one isolated muon; Diboson 150 observed close to a high transverse momentum jet. veto electrons; 100 veto b-tagged jets; jets muons any additional jets with $p_T^{jet} > 100 \text{ GeV}$; 50 anti-k, R = 0.4; $p_T > 25$ GeV; ΔR measured with respect to closest jet. $p_T^{jet} > 100 \text{ GeV}; |\mathbf{\eta}| < 2.4.$ Data/MC $|\mathbf{n}^{jet}| < 2.1;$ 0.5 1.5 Control region I Control region 2 Control region 3 $\Delta R(\mu, \text{ closest jet})$ 93% purity of dijet events 91% purity of ttbar events 94% purity of Z+jets events Events / 0.2 Events / 0.2 Events / 0.2 $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$ ATLAS Preliminary 500 √s = 8 TeV, 20.3 fb 90E ATLAS Preliminary √s = 8 TeV, 20.3 fb⁻¹ ATLAS Preliminary Data Data Data Leading Jet p_ > 500 GeV Leading Jet p_ > 500 GeV Leading Jet p₁ > 500 GeV. 100 450 80 Multijets Z+jets tt t Control Region 1 Control Region 2 Control Region 3 W+jets (ALPGEN ×0.71) ∎tŧ tŧ 400 70| W+jets (ALPGEN ×0.71) Multijets Diboson 80 W+jets (ALPGEN ×0.71) Z+jets Z+jets 350 60| Diboson Diboson Multijets 300 50E 60 250E 40| 200 40 30 20 150 100 20 10E 50 E Data/MC Data/MC Data/MC 1.5 1.5 0.5 0 0 0.5 2.5 3.5 0.5 3.5 0 0.5 2 2.5 3 3.5 1.5 2 3 1.5 2 2.5 3 1.5 $\Delta R(\mu, \text{ closest jet})$ $\Delta R(\mu, closest jet)$ $\Delta R(\mu, \text{ closest jet})$ ISMD 2016 - M.Donadelli

Differential cross-section of $W \rightarrow \mu \nu$ as a function of ΔR (μ , closest jet), obtained from the unfolded data of the signal region

SHERPA+OpenLoops (JHEP 04 (2016) 021) and $W + \ge 1$ jet Njetti NNLO (Phys. Rev. Lett. 115 (2015) 062002, Phys. Lett. B760 (2016) 6–13) show much better agreement across the entire distribution, when compared to other calculations.

ATLAS-CONF-2016-046

LO Alpgen+Py6 and MG5_aMC+Py8 CKKWL model in general a too-hard jet p_T spectrum and can be interpreted as an indication that the dynamic fragmentation and renormalisation scale used in the generation is not appropriate for the full jet p_T range;

NLO BlackHat+Sherpa, Sherpa 2.1, and MG5_aMC +Py8 FxFx are in agreement within the systematics uncertainties over the full range;

Njetti NNLO also models well the spectrum.

ATLAS-CONF-2016-046

Sherpa 2.1 and MG5_aMC+Py8 FxFx describe well HT;

MG5_aMC+Py8 CKKWL and Alpgen+Py6 overestimate the contribution at large values of HT;

BlackHat+Sherpa under-estimates the cross section for $H_T > 300$ GeV, as observed in similar measurements at lower centre-of-mass energies, due to the missing contributions from events with higher parton multiplicities;

agreement is recovered by adding higher orders in perturbative QCD, as demonstrated by the good description given by **N**_{jetti} **NNLO**.

shape and drop of the dijet mass is modelled well by BlackHat+Sherpa, Sherpa 2.1, Alpgen+Py6 and MG5_aMC+Py8 FxFx;

MG5_aMC+Py8 CKKWL shows a harder spectrum.

between the two leading jets for $Z+ \geq 2$ jet

is well modelled by all predictions

ATLAS-CONF-2016-046

isolated prompt photons

- **Theorem 3.1 Stev:** results shown for $E_T^{\gamma} > 1$ TeV, also revisiting lower- E_T data . NLO QCD (PeTeR) describes data well within uncertainties.
- ISTEV: MC (SHERPA 2.1) of signal provides a good description of the shape of the measured kinematic distributions.

jets

- four-jet @ 8TeV: MadGraph+Pythia provides the best description of mass variables, whereas Herwig++ provides a very good description for the angular variables.
- inclusive jets @ 13 TeV: in general there is good agreement between data and theory, confirming the validity of perturbative QCD in the measured kinematic regions.

vector bosons + jets

- collinear W @ 8 TeV: brand new measurement has implications for Monte Carlo programs that incorporate real W boson emission, a process which is only just now being probed directly at the LHC.
- \mathbf{F} **Z+jets @ I3 TeV**: N_{jetti} NNLO modelling well $p_T^{(1)}$ and H_T .

Additional slides

ATLAS Inner Detector and the photon reconstruction

Electron/photon discrimination

Based on track matching

Important for converted photon identification (~30% of all photons)

Based on vertex position

Pixel Tracker : 3 layers resolution 0.01 mm

Semi-Conducting Tracker: 4 layers (8 hits per track) resolution 0.017 mm

Transition Radiation Tracker: ~36 hits per track resolution 0.13 mm

ATLAS Electromagnetic Calorimeter and the photon reconstruction

Tower ∆φ ≓ 0.0982

Square cells in Layer 2

0.0245

Trigger Towe

 $\Delta n = 0$

Cells in Layer 3 $\Delta \phi \times \Delta \eta = 0.0245 \times 0.05$

 $\Delta \eta = 0.025$

Strip cells in Layer 1

Barrel |**η**| < 1.475 End-cap: 1.375 < |**η**| < 3.2

Depth segmentation allows measurement of photon direction

First layer: high granularity in η

Second layer: collects most of the energy, with granularity

 $\Delta \eta \times \Delta \phi = 0.025 \times 0.025$

Third layer: used to correct for leakage

Cluster of EM cells without matching track:

 \rightarrow "unconverted" photon candidate

Cluster of EM cells matched to pairs of tracks (from reconstructed conversion vertices in the inner detector) or matched to a single track consistent with originating from a photon conversion

η =0

4.3Xo

∆¢≈0.0245_{×4}

36.8mmx4

 $37.5 \text{mm/8} = 4.69 \text{mmm}^{\circ}$ $\Box \Delta \eta = 0.0031$

 $\Delta \eta \times \Delta \phi = 0.025 \times 0.1$

 \rightarrow "converted" photon candidate

ISMD 2016 - M.Donadelli

Photon reconstruction and identification

prompt photon candidate

 π^0 candidate

Signal vs background discrimination: shape variables from the lateral and longitudinal energy profiles of the shower in the calorimeters; "loose" and "tight" identification criteria.

- "Loose" identification criteria:
- \rightarrow leakage: $R_{\rm had} = E_{\rm T}^{\rm had}/E_{\rm T}$ (1st layer hadronic calorimeter)
- → $R_{\eta} = E_{3\times7}^{S_2}/E_{7\times7}^{S_2}$ S₂ =second layer of EM calorimeter
- ightarrow RMS width of the shower in η direction in S2

"Tight" identification criteria:

 \rightarrow the requirements applied in "Loose" are tightened

$$\rightarrow \quad R_{\phi} = E_{3\times3}^{S_2} / E_{3\times7}^{S_2}$$

and shower shapes in the first layer (to discriminate single-photon

showers from overlapping nearby showers, such as $\pi^0 \rightarrow \gamma \gamma$ \rightarrow e.g. asymmetry between the 1st and 2nd maxima in the energy profile along η (S1)

Efficiency: 97 (85)% for loose (tight) photons with $E_T^{Y} > 20 \text{ GeV}$

Photon identification variables

Photon isolation

 E_T^{iso} computed using clusters of calorimeter cells (EM and HAD) in a cone R = 0.4, excluding the contribution from the photon

→ Subtraction of the leakage of the photon energy outside that region (few %)

 \rightarrow The underlying event and pileup contribute to E_T^{iso} :

 \rightarrow subtracted on event-by-event basis using the jetarea method (JHEP 0804 (2008) 005)

 $(E_T^{iso})^{cor} < (E_T^{iso})^{cut}$

8TeV analysis cut: 4.8 GeV + $4.2 \times 10^{-3} \times E_T^{\gamma}$

→ After isolation requirement, residual background still expected

Background subtraction

A data-driven method used to avoid relying on detailed simulations of the background processes:

photons separated into four regions (A-tight and isolated; B-tight and non-isolated, C-non-tight and isolated; D-non-tight and non-isolated) with two fractions in regions B,C,D (signal and background) and only signal in region A

 E_T^{iso} [GeV]

$$N_{\text{signal}}^{\text{A,data}} = N^{\text{A,data}} - R_{\text{bkg}} \Big((N^{\text{B,data}} - f^{\text{B,MC}} N_{\text{signal}}^{\text{A,data}}) \frac{(N^{\text{C,data}} - f^{\text{C,MC}} N_{\text{signal}}^{\text{A,data}})}{(N^{\text{D,data}} - f^{\text{D,MC}} N_{\text{signal}}^{\text{A,data}})} \Big)$$

where: $f^{K,MC} = N_{signal}^{K,MC} / N_{signal}^{A,MC}$ with K = B, C, D is the signal leakage fraction

 $R_{\rm bkg} = N_{\rm bkg}^{\rm A,MC} N_{\rm bkg}^{\rm D,MC} / N_{\rm bkg}^{\rm B,MC} N_{\rm bkg}^{\rm C,MC}$

with the independence of the background variables

Purity: \geq 90% for E_T > 40 GeV (ATLAS, PRD 83 (2011) 052005)

ISMD 2016 - M.Donadelli

Inclusive production of isolated photons at 8 TeV

LO

Pythia 8.165 using CTEQ6L1 Sherpa 1.4.0 using CT10

JHEP 06 (2016) 005

NLO

JetPhox using CT10:

- parton-level generator for the prediction of processes with photons in the final state;
- NLO accuracy for both direct and fragmentation photon processes.

PeTer using CT10:

• parton-level generator including the resummation of QCD threshold logarithms at NNNLL

Comparison to NLO QCD calculation using **JetPhox**:

- $\stackrel{>}{\Rightarrow}$ a similar trend is observed at low E_T^{γ} in all $|\eta^{\gamma}|$ regions, the NLO QCD predictions underestimate the data by \approx 20%;
- Isology 2016
 Iso

Definition of various kinematic variables

Name	Definition	Comment	
$p_{\mathrm{T}}^{(i)}$	Transverse momentum of the i th jet	Sorted descending in $p_{\rm T}$	
H_{T}	$\sum_{i=1}^4 p_{ ext{T}}^{(i)}$	Scalar sum of the $p_{\rm T}$ of the four jets	
$m_{ m 4j}$	$\left(\left(\sum_{i=1}^{4} E_i\right)^2 - \left(\sum_{i=1}^{4} \mathbf{p}_i\right)^2\right)^{1/2}$	Invariant mass of the four jets	
$m_{2\mathrm{j}}^{\mathrm{min}}/m_{4\mathrm{j}}$	$\min_{\substack{i,j \in [1,4]\\i \neq j}} \left((E_i + E_j)^2 - (\mathbf{p}_i + \mathbf{p}_j)^2 \right)^{1/2} / m_{4j}$	Minimum invariant mass of two jets rel- ative to invariant mass of four jets	
$\Delta \phi_{2j}^{\min}$	$\min_{i,j\in[1,4]_{1\neq j}}\left(\left \phi_{i}-\phi_{j}\right \right)$	Minimum azimuthal separation of two jets	
$\Delta y_{2\mathrm{j}}^{\mathrm{min}}$	$\min_{i,j\in[1,4]_{1\neq j}}\left(y_{i}-y_{j} \right)$	Minimum rapidity separation of two jets	
$\Delta \phi_{3j}^{\min}$	$\min_{i,j,k\in[1,4]} = j \neq k} (\phi_i - \phi_j + \phi_j - \phi_k)$	Minimum azimuthal separation be- tween any three jets	
$\Delta y_{ m 3j}^{ m min}$	$\min_{i,j,k\in[1,4]_{1\neq j\neq k}} (y_i - y_j + y_j - y_k)$	Minimum rapidity separation between any three jets	
$\Delta y_{2\mathrm{j}}^{\mathrm{max}}$	$\Delta y_{ij}^{\max} = \max_{i,j \in [1,4]} \left(y_i - y_j \right)$	Maximum rapidity difference between two jets	
$\Sigma p_{\mathrm{T}}^{\mathrm{central}}$	$ p^c_{ m T} + p^d_{ m T} $	If $\Delta y_{2j}^{\text{max}}$ is defined by jets <i>a</i> and <i>b</i> , this is the scalar sum of the p_{T} of the other two jets, <i>c</i> and <i>d</i> ('central' jets)	

Four-jet production at 8 TeV

jets

MC

HEJ

Name

Pythia 8

Herwig++

anti-k, R = 0.4;

Uncertainties

unfolding using Bayesian **Iterative** method as implemented in RooUnfold (arXiv:1105.1160) **JES** (4-15%); **¥ JER** (|-|0%); \checkmark jet angular resolution: $\lesssim 2\%$

Pythia 8

HEJ

HERWIG++

MADGRAPH

Juminosity: 2.8%

2012 Data: $L = 20.3 \text{ fb}^{-1}$ inclusive analysis cuts: |y| < 2.8, $p_T(4) > 64$ GeV, $p_T(1) > 100$ GeV, $\Delta R_{4i}^{min} > 0.65$

total systematic uncertainty

BlackHat/Sherpa

NJet/Sherpa

MadGraph+Pythia

CT10

NLO $(2 \rightarrow 4)$

Inclusive jets at 13 TeV

ATLAS-CONF-2016-092

Data (2015): L = 3.2 fb⁻¹

MC

LO Pythia 8.186 using A14 tune and NNPDF2.3 LO PDF set

Jet identification

 $\frac{1}{2}$ anti-k_t algorithm (R=0.4) inputs to the algorithm:

Cross-section

- $\stackrel{\scriptscriptstyle \ensuremath{\wp}}{=}$ using jets representing those clustered from stable particles with c τ > 10 mm
- muons, neutrinos from decaying hadrons included in the clustering
- $\int_{a}^{b} d^{2}\sigma/dp_{T}dy$ for $p_{T}^{jet} \ge 100 \text{ GeV}$, |y| < 3 with six equidistant jet rapidity bins

luminosity: 2.1%

systematic uncertainties

JES, JER and unfolding procedure (JHEP 1502 (2015) 153)

statistical uncertainties

estimated using pseudoexperiments including effects from data and MC statistics

data consistent with:

→BLACKHAT+SHERPA →ALPGEN →SHERPA

MC@NLO underestimates observed rate leading to large offsets for higher multiplicities

 $R_{\geq (n+1)/\geq n}$: ratio of cross sections for two successive multiplicities: more precise measurement of QCD process, due to cancellation of part of the systematic uncertainty

predictions show reasonable agreement with the observed cross sections and their ratios, **except for** MG5_aMC+Py8 FxFx, which is expected, since the samples only account for the production of up to two jets at NLO while subsequent jets are produced by the parton shower.

W+jets at 7 TeV

W^{\pm} JetsExactly one lepton required
 $p_T^{-1} > 25 \text{ GeV}$ anti- $k_t R = 0.4$ $p_T^{-\nu} > 25 \text{ GeV}$ $p_T^{-jet} > 30 \text{ GeV}$ $|\eta_1| < 2.4 \text{ for e, } (2.47 \text{ for } \mu)$ $|y^{jet}| < 4.4$, $m_T > 40 \text{ GeV}$ $\Delta R(l, jet) > 0.5$ Eur. Phys. J. C (2015) 75:82

NO SPORTS OF STORE

Njets

good agreement with **BlackHat+SHERPA** up to 5 jets **ALPGEN** and **SHERPA**: different trends for $N_{jets} > 4$, still in agreement with data within systematic uncertainties

Η_T

ALPGEN and **SHERPA** tend to be higher than the data at HT > 600 GeV.

BlackHat+SHERPA lower than the data for Njets \geq 1

Ratio W+jets/Z+jets at 7 TeV

Exactly one lepton required $p_T^{|} > 25 \text{ GeV}$ $p_{T}^{\nu} > 25 \text{ GeV}$ $|{\bf \eta}_{\rm I}| < 2.4$ for e, (2.47 for ${\bf \mu}$) $m_{T} > 40 \text{ GeV}$

Z[±]

 $p_T^{\mid} > 25 \text{ GeV}$ $|\eta_1| < 2.4$ for e, (2.47 for μ) two opposite-sign charged leptons $66 \text{ GeV} < m_{\parallel} < 116 \text{ GeV}$ $\Delta R(I, I) < 0.2$

lets

anti- $k_{+} R = 0.4$ $p_T^{jet} > 30 \text{ GeV}$ $|y^{jet}| < 4.4,$ $\Delta R(l, jet) > 0.5$

Eur. Phys. J. C (2014) 74: 3168

ttbar and multi jet backgrounds are data driven estimated, others are based on MC Iterative Bayesian unfolding is used to compare data to theoretical predictions

Ratio W+jets/Z+jets at 7 TeV

Weak sensitivity to non-perturbative effects enhancing the difference in soft QCD radiation between W and Z events, but not cancelling completely in Rjets

ISMD 2016 - M.Donadelli