

Progress of nuclear astrophysics in China, Beijing facilities and JUNA project

Weiping Liu ANPhA symposium Oct. 23 - 24, 2015, Kyeongju China Institute of Atomic Energy (CIAE) Beijing, China wpliu@ciae.ac.cn

What will be talk

- Nuclear astrophysics now in China
- RI facilities in Beijing
- Underground JUNA project

NA framework

Role of Nuclear Science in Studies of the Stars

From Michael Smith

ANPhA symposium Oct. 23-24, 2015, Kyeongju

Methodology

World wide map

JINA concept with worldwide impact

JUNA

EMMI Helmholtz Alliance ; JINA founding member

(GSI, German; U. Tokyo, Japan; U. Paris, France; LBNL; JINA)

From Michael Wiescher

Milestones of NA in China

Direct measurement

B. Bucher, X. D. Tang* et al., NP and IMP, PRL 114(2015)251102 J.J. He, et al., PL B 725 (2013) 287

Indirect measurement

W.P. Liu et al., CIAE, PRL77(1996)611

JUNA

29th IAU General Assembly August 01 - 14, 2015, Honolulu

rp process decay

Isotope	T _{1/2} (ms)			50	51	52 ?	53 3.0 ⁻⁷	54 7.5 ⁻⁸	55 2.0 ⁻⁷	56 1.0 ⁻²
	Present Work	NNDC	Cu	49 3.5 ⁻⁷	50 8.0 ⁻³	51 9.0 ⁻³	52 2.0 ⁻²	53 4.5 ⁻²	54 1.0 ⁻¹	55 1.9 ⁻¹
⁵³ Ni	52±5	55±0.7	Ni	48 ?	49 3.5 ⁻⁸	50 1.0 ⁻²	51 -2.0 ⁻²	52 -2.0 ⁻²	53 -2.6 ⁻¹	54 -7.5 ⁻¹
⁵⁴ Ni	111±6	104±7	_							
⁵² Co	108±4	115±23	Со	47 1.0 ⁻²	48 3.0 ⁻²	49 7.5 ⁻²	50 1.0 ⁻¹	51 2.5 ⁻¹	52 3.0⁴	53 5.1 ²
⁵³ Co	248±12	240±9 ^a 247±12 ^b	Fe	46 1.5 ⁻²	47 3.0 ⁻²	48 3.0 ⁻²	49 3.8 ⁻¹	50 7.6 ⁻¹	51 2.8 ³	52 6.84
			Mn	45	46			20	50	51
⁵¹ Fe	298±5	305±5		45	+0	1	40.	-+9	-1E00	51.
					A_{t^m}		_	1E-3	2-1E-1	
⁵⁰ Mn	286 ±7	283.3±0		A: Mass 1E-3-1E-2						
14111		.8		t ^m : Lifetime=t×10 ^m (sec) 1E-4-1E-3 1E-5-1E-4						
					gray	oux; stable		11.		

J. su et al., CIAE, Phys. Rev. C 87 ,024312 (2013)

ANPhA symposium Oct. 23-24, 2015, Kyeongju

Mass in CSR Lanzhou

X. L. Tu et al., PRL106(2011)102501; X. L. Yan et al., ApJL 766(2013)8, IMP

Theory

Z. M. Niu, B. H. Sun, J. Meng, PRC 80, 065806

N. Wang, mass, PRC84, 051303R(2011)

K. Kaneko, Y. Sun, et al., PRL 110, 172505 (2013)

ANPhA symposium Oct. 23-24, 2015, Kyeongju

Network calc

N. C. Shu, Y. S. Chen et al., NPA 758 (2005) 419c

Z. M. Niu, B. H. Sun, J. Meng, PRC 80, 065806 (2009)

Full coverage of NA

ANPhA symposium Oct. 23-24, 2015, Kyeongju

Big platforms in China

BRIF commissioning

First Beam July 4, 2014

JUNA

12 hours running with current of 23 µA July 25, 2014

Stable beam mass resolution 14385 Oct 20, 2014

Beijing ISOL

Beijing ISOL

Beijing ISOL

China NP road map

1986 Tandem Beijing HI-13 1988 Cyclotron Lanzhou SSC 2008 Storage ring Lanzhou CSR

JUNA

2014 ISOL facility Beijing BRIF

2020 HI facility Dongguan HIAF

2025 Beijing ISOL facility

Underground nuclear astrophysics

- Direct is the way to get rid of model dependence
- Direct in Gamow window have to go underground
- Underground is list in top priority
- Many world lab planned, with LUNA operational

Underground nuclear astrophysics

- Direct is the way to get rid of model dependence
- Direct in Gamow window have to go underground
- Underground is list in top priority
- Many world lab planned, with LUNA operational

From Paolo Prati LUNA experiments

³He(³He,2p)⁴He

103 102 101 Counts (keV h)⁻¹ 100 10 ²H(p,y)³He 14N(p.3)15O 10 Laboratory ·-ray 10-3 background 10-4 10-50 5 10 15 E, (MeV)

¹⁴N(p,γ)¹⁵O

From Paolo Prati LUNA experiments

29th IAU General Assembly August 01 - 14, 2015, Honolulu

³He(³He,2p)⁴He PRL82(1999)5205 ²H(³He,p)⁴He PLB482(2000)43 $^{2}H(p,\gamma)^{3}He$ NPA 706(2002)203 ³He(α,γ)⁷Be PRL 97(2006)122502 $^{14}N(p,\gamma)^{15}O$ PLB 591(2004)61 $^{15}N(p,\gamma)^{16}O$ PRC82, 055804(2010) $^{17}O(p,\gamma)^{18}F$ PRL 109, 202601(2012) $^{25}Mg(p,\gamma)^{26}Al$ PLB 707(2012) 60

O Dwarakanath

O Krauss et al. (5)

LUNA 1998–19

Kudomi et al.

³He

10

10

10

10-10

10-11

10-12

10-13

10-14

10-15

10-16

10³

101

100

10

10

10-3

10-4

10-50

Laboratory y-ray

background

Cross section (b)

CJPL advantage

CJPL advantage

ANPhA symposium Oct. 23-24, 2015, Kyeongju

ANPhA symposium Oct. 23-24, 2015, Kyeongju

CJPL-II experiments

ANPhA symposium Oct. 23-24, 2015, Kyeongju

CJPL-II experiments

JUNA organization

JUNA

Group leader

- IMP •
- THU •
- **SJTU** ۲
- SCU ۲
- **SDU** ۲
- SZU ۲
- ...

Weiping Liu ¹²C(α,γ)¹⁶O

Xiaodong Tang ¹³C(α,n)¹⁶O **Ion source**

PI

Zhihong Li ²⁵Mg(p,γ)²⁶Al

Jianjun He ¹⁹F(p,α)¹⁶O

Gang Lian Accelerator

JUNA team

Weiping Liu¹, Zhihong Li¹, Jianjun He², Xiaodong Tang², Gang Lian¹, Zhu An⁴, Qinghao Chen³, Xiongjun Chen¹, Yangping Chen¹, Zhijun Chen², Baoqun Cui¹, Xianchao Du¹, Changbo Fu⁵, Lin Gan¹, Bing Guo¹, Guozhu He¹, Alexander Heger⁶, Suqing Hou², Hanxiong Huang¹, Ning Huang⁴, Baolu Jia², Liyang Jiang¹, Shigeru Kubono⁷, Jianmin Li³, Kuoang Li², Tao Li², Yunju Li¹, Maria Lugaro⁸, Xiaobing Luo⁴, Shaobo Ma², Dongming Mei⁹, Yongzhong Qian¹⁰, Jiuchang Qin¹, Jie Ren¹, Jun Su¹, Liangting Sun², Wanpeng Tan¹¹, Isao Tanihata¹², Peng Wang⁴, Shuo Wang¹³, Youbao Wang¹, Qi Wu², Shiwei Xu², Shengquan Yan¹, Litao Yang³, Xiangqing Yu², Qian Yue³, Sheng Zeng¹, Huanyu Zhang¹, Hui Zhang³, Liyong Zhang², Ningtao Zhang₂, Qiwei Zhang¹, Tao Zhang⁵, Xiaopeng Zhang⁵, Xuezhen Zhang², Zimin Zhang², Wei Zhao³, Zuo Zhao¹, Chao Zhou¹

¹China Institute of Atomic Energy, Beijing, China, ²Institute of Modern Physics, Lanzhou, China ³Tsinghua University, Beijing, China, ⁴Sichuan University, Chengdu, China ⁵Shanghai Jiaotong University, Shanghai, China, ⁶Monash University, Melbourne, Victoria, Australia ⁷RIKEN, Institute of Physical and Chemical Research, Wako, Japan, ⁸Konkoly Observatory of the Hungarian Academy of Sciences, Hungary, ⁹South Dakota State University, Brookings, South

Dakota, US

¹⁰Minnesota University, Minneapolis and Saint Paul, Minnesota, US, ¹¹University of Notre Dame, Notre Dame, Indiana, US, ¹²Osaka University, Suita, Osaka, Japan ¹³Shangdong University, Beihai, China

JUNA international team

Osaka, Isao Tanihata

Monash, Alexander Heger

Notre Dame, Wanpeng Tan

HAS, Maria Lugaro

Minisota, Yongzhong Qian

RIKEN, Shigeru Kubono

South Dakota, Dongming Mei

29th IAU General Assembly August 01 - 14, 2015, Honolulu

JUNA IAC

		-
M. Wiescher	Chair	UND
T. Motobayashi	Member	RIKEN
H. Wang	Member	TCAS
C. Brune	Member	Ohio
M. Junker	Member	INFN
D. Robertson	Member	UND
F. Strieder	Member	SDSMT
D. Leitner	Member	LBL
Q. Yue	Member	THU

Preparation meeting July 2015 in Beijing, 1st IAC meeting March 1-3, 2016 in CJPL

JUNA-I funding

Detectors (NSFC \$1.3M)

Electronics, shielding (NSFC \$1.0M)

Ion source (CAS \$0.8M), accelerator (CNNC \$0.5M)

total \$4.8+ M

JUNA-I funding

Detectors (NSFC \$1.3M)

Electronics, shielding (NSFC \$1.0M)

Ion source (CAS \$0.8M), accelerator (CNNC \$0.5M)

Lab CJPL II (Tsinghua, NSFC \$1.2M)

total \$4.8+ M

JUNA-I plan

ECR source

Acceleration

Intensity

Magnet Energy

Detectors

JUNA-I plan

ECR source

Acceleration

Intensity

Magnet Energy

Detectors

JUNA-I plan

ECR source	Acceleration	Magnet	Detectors		
Beam	Intensity, mA	Energy,keV			
H⁺	10	70-400			
He⁺	10	70-400			
Не++	2-5	140-800	30 /49		

γ astronomy ²⁵Mg(p,γ)²⁶Al

F over-abundant ¹⁹F(p, α)¹⁶O

F over-abundant ¹⁹F(p, α)¹⁶O

γ astronomy ²⁵Mg(p,γ)²⁶Al

F over-abundant ¹⁹F(p, α)¹⁶O

γ astronomy ²⁵Mg(p,γ)²⁶Al

F over-abundant ¹⁹F(p, α)¹⁶O

γ astronomy ²⁵Mg(p,γ)²⁶Al

CJPL-II construction

May 2015

CJPL-II construction

May 2015

CJPL-II construction

May 2015

Sept. 2015

Recent progress

Proton beam with 40 KV and 20 mA

Tandem of implantation target

solid and gas detector and electronics

JUNA

CJPLdlowabackgroundstation 求得²H(d,y)^dHe 反应的截面为o=2.9×10⁻¹¹b(1±40%) 33 /17

ANPhA symposium Oct. 23-24, 2015, Kyeongju

ANPhA symposium Oct. 23-24, 2015, Kyeongju

Detector design

Detector design

Target and shielding

2 year application

Aug. 21, 2013, Xichang

基于地下实验室的核天体物理前沿研讨会

2 year application

Aug. 21, 2013, Xichang

基于地下实验室的核天体物理前沿研讨会

Dec. 24, 2014, CIAE

JUNA in Science

PHYSICS

China supersizes its underground physics lab

Planned expansion could pave way for "ultimate dark matter experiment"

By Dennis Normile

he world's deepest physics laboratory is about to become one of its largest. Early next year, workers will start carving four cavernous experiment halls along a tunnel through Jinping Mountain in China's Sichuan province. Once the science at the China Jinping Underground Laboratory (CJPL) is scaled up as well, "it will be a milestone for Chinese physics," says Nigel Smith, director of the underground SNOLAB in Sudbury, Canada.

Opened in December 2010, CJPL is the deepest facility of its kind, with 2400 meters of rock shielding it from background radiation (see chart). The lab so far has focused on the hunt for dark matter, the universe's postulated missing mass. More space will allow larger and more sensitive dark matter detectors and an expanded research agenda that will include a nuclear astrophysics accelerator to replicate the inner workings of stars. CJPL also hopes to branch out into observing neutrinos and studying exotic particle phenomena.

Deep underground labs elsewhere have a head start in all of these areas. This means the Chinese will have to choose research targets carefully based on "if and where they can do better" than existing experiments, says Alessandro Bettini, director of the Canfranc Underground Laboratory in Spain. Others have confidence in the Chinese quickly coming up to speed. "It's a highly competitive site (with] lots of potential," says John Ellis, a theorist at King's College London who chairs a new international advisory committee that visited the lab last month.

China's ascent in underground physics began serendipitously in August 2008, when Qian Yue, a physicist at Tsinghua University in Beijing, saw a TV report about access tunnels being bored through Jinping Mountain for a massive hydroelectric project. Tsinghua approached the Yalong River Hydropower Development Co. Ltd., which agreed to excavate two experiment halls totaling 4000 cubic meters along one of the tunnels (Science, 5 June 2009, p. 1246).

CJPL, run by Tsinghua, now hosts two dark matter experiments. The Particle and Astrophysical Xenon (PandaX) experiment uses a 37-kilogram liquid xenon target to watch for dark matter in the form of postulated weakly interacting massive particles (WIMPs). If

WIMPs exist, they should occasionally travel unmolested through the mountain and collide with a xenon nucleus, producing a flash of light. In the other experimental hall, the China Dark Matter Experiment (CDEX) aims to catch the electrical signal produced if a WIMP bumps into a nucleus within a germanium crystal. "There is complementarity" between the two approaches, says Henry Wong, a physicist at Academia Sinica's Institute of Physics in Taipei and member of the CDEX collaboration. Xenon detectors should be better at distinguishing a WIMP signal from flashes sparked by some kinds of background radiation, whereas the more sensitive germanium detectors ought to be able to spot interactions involving lighter WIMPs. Although

Deep, dark labs

0

In the hunt for dark matter, deeper is better. Labs are built in mines (light blue) and tunnels (dark blue and red).

neither experiment has yet detected a WIMP,

they both have helped confirm results from

500 1000 1500 2000 2500 Depth in meters

Published by AAAS

other labs indicating that WIMPs are likely to have very little mass.

For an initial effort, the results are "pretty decent," says Wick Haxton, a theorist at the University of California, Berkeley. To boost its chances of sighting WIMPs and determining their mass, CJPL needs a larger volume of xenon, more germanium crystals, and better shielding. All of that requires more space. "If they significantly enlarge those experiments over the next couple years," Haxton says, "they could end up being very competitive."

CIPL is about to get the elbow room it needs. Before the hydropower construction work wraps up next year, crews will bore another four 130-meter-long experiment halls. When lined with concrete, each will be 13.2 meters wide with an arched ceiling 13.2 meters wide with an arched ceiling 13.2 meters high. All told, the enlarged facility will have 120,000 cubic meters of research space, second only to tlay's Gran Saso National Laboratory, which has 180,000 cubic meters. By piggybacking on the hydropower project, Tšinghua limited the expansion's cost to \$50 million. Yue hopes to start experiments in the new halls by the end of 2016. CDEX aims to boost its sensitivity by in-

ccDEA aims to boost its sensitivity by increasing its germanium target from 1 to 10 kilograms and by adding more elaborate shielding. The PandaX team is thinking much bigger. "We are interested in building the ultimate dark matter experiment: a 20-ton scale liquid xenon experiment; asys Xiangdong Ji, a physicist at Shanghai Jiao Tong University and the University of Maryland, College Park. That would be several times larger than existing liquid xenon experiments. Realizing such a mammoth project, says Ji, who leads PandaX, could require teams worldwide to pool resources.

A new experiment planned for the expanded space is the Jinping Underground laboratory for Nuclear Astrophysics (JUNA). Its pièce de résistance would be a particle accelerator used to replicate the nuclear processes generating energy within stars and the synthesis of heavier elements from hydrogen and helium in the primordial universe. The rock shielding would reduce background noise, making it easier for researchers to detect rare and subtle signals. With a more powerful accelerator and a deeper location than other efforts, says project head Weiping Liu, a physicist at the China Institute of Atomic Energy in Beijing, "JUNA has the potential to take a favorable position among underground nuclear astrophysics labs."

Downloaded from www.sciencemag.org on November 30, 201

4

JUNA in Science

PHYSICS

China supersizes its underground physics lab

Planned expansion could pave way for "ultimate dark matter experiment"

By Dennis Normile

he world's deepest physics laboratory is about to become one of its largest. Early next year, workers will start carving four cavernous experiment halls along a tunnel through Jinping Mountain in China's Sichuan province. Once the science at the China Jinping Underground Laboratory (CJPL) is scaled up as well, "it will be a milestone for Chinese physics," says Nigel Smith, director of the underground SNOLAB in Sudbury, Canada.

Opened in December 2010, CJPL is the deepest facility of its kind, with 2400 meters of rock shielding it from background radiation (see chart). The lab so far has focused on the hunt for dark matter, the universe's postulated missing mass. More space will allow larger and more sensitive dark matter detectors and an expanded research agenda that will include a nuclear astrophysics accelerator to replicate the inner workings of stars. CJPL also hopes to branch out into observing neutrinos and studying exotic particle phenomena.

Deep underground labs elsewhere have a head start in all of these areas. This means the Chinese will have to choose research targets carefully based on "if and where they can do better" than existing experiments, says Alessandro Bettini, director of the Canfranc Underground Laboratory in Spain. Others have confidence in the Chinese quickly coming up to speed. "It's a highly competitive site (with] lots of potential," says John Ellis, a theorist at King's College London who chairs a new international advisory committee that visited the lab last month.

China's ascent in underground physics began serendipitously in August 2008, when Qian Yue, a physicist at Tsinghua University in Beijing, saw a TV report about access tunnels being bored through Jinping Mountain for a massive hydroelectric project. Tsinghua approached the Yalong River Hydropower Development Co. Ltd., which agreed to excavvate two experiment halls totaling 4000 cubic meters along one of the tunnels (Science, 5 June 2009, p. 1246).

CJPL, run by Tsinghua, now hosts two dark matter experiments. The Particle and Astrophysical Xenon (PandaX) experiment uses a 37-kilogram liquid xenon target to watch for dark matter in the form of postulated weakly interacting massive particles (WIMPs). If

WIMPs exist, they should occasionally travel unmolested through the mountain and collide with a xenon nucleus, producing a flash of light. In the other experimental hall, the China Dark Matter Experiment (CDEX) aims to catch the electrical signal produced if a WIMP bumps into a nucleus within a germanium crystal. "There is complementarity" between the two approaches, says Henry Wong, a physicist at Academia Sinica's Institute of Physics in Taipei and member of the CDEX collaboration. Xenon detectors should be better at distinguishing a WIMP signal from flashes sparked by some kinds of background radiation, whereas the more sensitive germanium detectors ought to be able to spot interactions involving lighter WIMPs. Although

Deep, dark labs

0

In the hunt for dark matter, deeper is better. Labs are built in mines (light blue) and tunnels (dark blue and red).

neither experiment has yet detected a WIMP,

they both have helped confirm results from

500 1000 1500 2000 2500 Depth in meters

Published by AAAS

other labs indicating that WIMPs are likely to have very little mass.

For an initial effort, the results are "pretty decent," says Wick Haxton, a theorist at the University of California, Berkeley. To boost its chances of sighting WIMPs and determining their mass, CJPL needs a larger volume of xenon, more germanium crystals, and better shielding. All of that requires more space. "If they significantly enlarge those experiments over the next couple years," Haxton says, "they could end up being very competitive."

CIPL is about to get the elbow room it needs. Before the hydropower construction work wraps up next year, crews will bore another four 130-meter-long experiment halls. When lined with concrete, each will be 13.2 meters wide with an arched ceiling 13.2 meters wide with an arched ceiling 13.2 meters high. All told, the enlarged facility will have 120,000 cubic meters of research space, second only to tlay's Gran Saso National Laboratory, which has 180,000 cubic meters. By piggybacking on the hydropower project, Tšinghua limited the expansion's cost to \$50 million. Yue hopes to start experiments in the new halls by the end of 2016. CDEX aims to boost its sensitivity by in-

CDEX aims to boost its sensitivity by increasing its germanium target from 1 to 10 kilograms and by adding more elaborate shielding. The PandaX team is thinking much bigger. "We are interested in building the ultimate dark matter experiment; asy Xiangdong Ji, a physicist at Shanghai Jiao Tong University and the University of Maryland, College Park. That would be several times larger than existing liquid xenon experiments. Realizing such a mammoth project, says Ji, who leads PandaX, could require teams worldwide to pool resources.

A new experiment planned for the expanded space is the Jinping Underground laboratory for Nuclear Astrophysics (JUNA). Its pièce de résistance would be a particle accelerator used to replicate the nuclear processes generating energy within stars and the synthesis of heavier elements from hydrogen and helium in the primordial universe. The rock shielding would reduce background noise, making it easier for researchers to detect rare and subtle signals. With a more powerful accelerator and a deeper location than other efforts, says project head Weiping Liu, a physicist at the China Institute of Atomic Energy in Beijing, "JUNA has the potential to take a favorable position among underground nuclear astrophysics labs."

detectors and an expanded research agenda that will include a nuclear astrophysics accelerator to replicate the inner workings of stars. CJPL also hopes to branch out into ob-

JUNA in Science

PHYSICS

China supersizes its underground physics lab

Planned expansion could pave way for "ultimate dark matter experiment"

By Dennis Normile

he world's deepest physics laboratory is about to become one of its largest. Early next year, workers will start carving four cavernous experiment halls along a tunnel through Jinping Mountain in China's Sichuan province. Once the science at the China Jinping Underground Laboratory (CJPL) is scaled up as well, "it will be a milestone for Chinese physics," says Nigel Smith, director of the underground SNOLAB in Sudbury, Canada.

Opened in December 2010, CJPL is the deepest facility of its kind, with 2400 meters of rock shielding it from background radiation (see chart). The lab so far has focused on the hunt for dark matter, the universe's postulated missing mass. More space will allow larger and more sensitive dark matter detectors and an expanded research agenda that will include a nuclear astrophysics accelerator to replicate the inner workings of stars. CJPL also hopes to branch out into observing neutrinos and studying exotic particle phenomena.

Deep underground labs elsewhere have a head start in all of these areas. This means the Chinese will have to choose research targets carefully based on "if and where they can do better" than existing experiments, says Alessandro Bettini, director of the Canfranc Underground Laboratory in Spain. Others have confidence in the Chinese quickly coming up to speed. "It's a highly competitive site [with] lots of potential," says John Ellis, a theorist at King's College London who chairs a new international advisory committee that visited the lab last month.

China's ascent in underground physics began serendipitously in August 2008, when Qian Yue, a physicist at Tsinghua University in Beijing, saw a TV report about access tunnels being bored through Jinping Mountain for a massive hydroelectric project. Tsinghua approached the Yalong River Hydropower Development Co. Ltd., which agreed to excavvate two experiment halls totaling 4000 cubic meters along one of the tunnels (Science, 5 June 2009, p. 1246).

CJPL, run by Tsinghua, now hosts two dark matter experiments. The Particle and Astrophysical Xenon (PandaX) experiment uses a 37-kilogram liquid xenon target to watch for dark matter in the form of postulated weakly interacting massive particles (WIMPs). If

WIMPs exist, they should occasionally travel unmolested through the mountain and collide with a xenon nucleus, producing a flash of light. In the other experimental hall, the China Dark Matter Experiment (CDEX) aims to catch the electrical signal produced if a WIMP bumps into a nucleus within a germanium crystal. "There is complementarity" between the two approaches, says Henry Wong, a physicist at Academia Sinica's Institute of Physics in Taipei and member of the CDEX collaboration. Xenon detectors should be better at distinguishing a WIMP signal from flashes sparked by some kinds of background radiation, whereas the more sensitive germanium detectors ought to be able to spot interactions involving lighter WIMPs. Although neither experiment has yet detected a WIMP,

Deep, dark labs

0

In the hunt for dark matter, deeper is better. Labs are built in mines (light blue) and tunnels (dark blue and red).

they both have helped confirm results from

500 1000 1500 2000 2500 Depth in meters

Published by AAAS

other labs indicating that WIMPs are likely to have very little mass.

For an initial effort, the results are "pretty decent," says Wick Haxton, a theorist at the University of California, Berkeley. To boost its chances of sighting WIMPs and determining their mass, CJPL needs a larger volume of xenon, more germanium crystals, and better shielding. All of that requires more space. "If they significantly enlarge those experiments over the next couple years," Haxton says, "they could end up being very competitive."

4

201

30,

November

uo

org

lag.

from

Downloaded

CJPL is about to get the elbow room it needs. Before the hydropower construction work wraps up next year, crews will bore another four 130-meter-long experiment halls. When lined with concrete, each will be 13.2 meters wide with an arched ceiling 13.2 meters wide with an arched ceiling 13.2 meters high. All told, the enlarged facility will have 120,000 cubic meters of research space, second only to Italy's Gran Saso National Laboratory, which has 180,000 cubic meters. By piggybacking on the hydropower project, Tšinghua limited the expansion's cost to \$50 million. Yue hopes to start experiments in the new halls by the end of 2016. CDEX aims to boost its sensitivity by in-

creasing its germanium target from 1 to 10 kilograms and by adding more elaborate shielding. The PandaX team is thinking much bigger. "We are interested in building the ultimate dark matter experiment: a 20-ton scale liquid xenon experiment;" says Xiangdong Ji, a physicist at Shanghai Jiao Tong University and the University of Maryland, College Park. That would be several times larger than existing liquid xenon experiments. Realizing such a mammoth project, says Ji, who leads PandaX, could require teams worldwide to pool resources.

A new experiment planned for the expanded space is the Jinping Underground laboratory for Nuclear Astrophysics (JUNA). Its pièce de résistance would be a particle accelerator used to replicate the nuclear processes generating energy within stars and the synthesis of heavier elements from hydrogen and helium in the primordial universe. The rock shielding would reduce background noise, making it easier for researchers to detect rare and subtle signals. With a more powerful accelerator and a deeper location than other efforts, says project head Weiping Liu, a physicist at the China Institute of Atomic Energy in Beijing, "JUNA has the potential to take a favorable position among underground nuclear astrophysics labs."

detectors and an expanded research agenda that will include a nuclear astrophysics accelerator to replicate the inner workings of stars. CJPL also hopes to branch out into ob-

A new experiment planned for the expanded space is the Jinping Underground laboratory for Nuclear Astrophysics (JUNA). Its pièce de résistance would be a particle accelerator used to replicate the nuclear processes generating energy within stars and the synthesis of heavier elements from hydrogen and helium in the primordial universe. The rock shielding would reduce background noise, making it easier for researchers to detect rare and subtle signals. With a more powerful accelerator and a deeper location than other efforts, says project head Weiping Liu, a physicist at the China Institute of Atomic Energy in Beijing, "JUNA has the potential to take a favorable position among underground nuclear astrophysics labs."

JUNA-I reaction summary

Physics	Reaction	Current	JUNA goal
Massive star	¹² C(α,γ) ¹⁶ O	60% 890 keV	test 380 keV
Heavy ion synthesis	¹³ C(a,n) ¹⁶ O	60% 279 keV	20% 200 keV
Galaxy ²⁶ Al source	²⁵ Mg(p,γ) ²⁶ AI	20% 92 keV	15 % 58 keV
F aboundace	¹⁹ F(p,a) ¹⁶ O	30 % 180 keV	10% 70 keV
Underground technique	Low background,	10 ⁻¹⁴ b	10 ⁻¹⁷ b

JUNA-I reaction summary

JUNA

Physics	5		Reaction		С	Current		JUNA goal		
Massivo	e star		¹² C(α,γ) ¹⁶ O		60% 890 keV		test 380 keV			
Heavy i synthes	on sis		¹³ C(a,n) ¹	6 0	6 2	0% 79 keV		20% 200	keV	
Galaxy source	alaxy ²⁶ Al ²⁵ Mg(p,γ) ²⁶ Al cource		20% 92 keV		15 % 58 keV					
F aboundace ¹⁹ F(p,a) ¹⁶ O		30 % 180 keV		10% 70 keV						
Underg technig	round	d	Low backgrou	und.	1	0 -14 b		10 -17	b	
reaction	Beam	Intensit	ty EC.M.	Cross sectio	on	Target thickness	Effic	iency	стѕ	BGD
² C(α,γ) ¹⁶ O	He ²⁺	2.5 em/	A 380 keV	10 ⁻¹³ mb		10 ¹⁸ atoms/cm ²	7	5 %	0.2 /day	0.2 /day
³ C(α,n) ¹⁶ O	He ¹⁺	10 em/	A 200 keV	10 ⁻¹² mb		10 ²¹ atoms/cm ²	20 %		7 /day	1/day
Mg(p,γ) ²⁶ Al	H*	10 em/	A 58 keV	ωγ =2.1x10⁻¹³ (eV	0.6 μg/cm ²	38	3 %	1.4 /day	0.2 /day
⁹ F(p,α) ¹⁶ O	H ⁺	0.1 em/	A 70 keV	10 ⁻⁹ mb		4 μg/cm ²	38	3 %	13 /day	0.2 /day

25

Background in CJPL

29th IAU General Assembly August 01 - 14, 2015, Honolulu

Background in CJPL

JUNA-II plan

4MV accelerator

Windowless target

RMS

Detectors

JUNA-II plan

4MV accelerator

Windowless target

RMS

Detectors

JUNA-II plan

4MV accelerator

Windowless target

RMS

Detectors

JUNA schedule

JUNA-I 2015-2019

JUNA schedule

JUNA-I 2015-2019

JUNA schedule

JUNA-I 2015-2019
JUNA schedule

JUNA-I 2015-2019

JUNA schedule

JUNA-I 2015-2019

29th IAU General Assembly August 01 - 14, 2015, Honolulu

JUNA schedule

H burning ³He(α,γ)⁷Be 2 H(α,γ)⁶Li ³He(³He,2p)⁴He $^{7}Be(p,\gamma)^{8}B$ $^{12}C(p,\gamma)^{13}N$ $^{14}N(p,\gamma)^{15}O$ $^{15}N(p,\gamma),(p,\alpha)^{16}O,^{12}C$ $^{17}O(p,\gamma),(p,\alpha)^{18}F,^{14}N$ $^{18}O(p,\gamma),(p,\alpha)^{19}F,^{15}N$ $^{19}F(p,\gamma),(p,\alpha)^{20}Ne,^{16}O$

JUNA plan He burning $^{12}C(\alpha,\gamma)^{16}O$ ¹⁶Ο(α,γ)²⁰Ne 20 Ne(α , γ) 24 Mg $^{18}O(\alpha, \gamma)^{22}Ne$ $^{22}Ne(\alpha,\gamma)^{26}Mg$ $^{24}Mg(\alpha,\gamma)^{28}Si$

n source ${}^{13}C(\alpha,n){}^{16}O$ ${}^{22}Ne(\alpha,n){}^{25}Mg$ ${}^{25}Mg(\alpha,n){}^{28}Si$ ${}^{26}Mg(\alpha,n){}^{29}Si$ **C, O burning** ¹²C+¹²C ¹²C+¹⁶O ¹⁶O+¹⁶O

 γ astronomy ²⁵Mg(p, γ)²⁶Al :

JUNA-I

H burning ³He(α,γ)⁷Be 2 H(α,γ)⁶Li ³He(³He,2p)⁴He $^{7}Be(p,\gamma)^{8}B$ $^{12}C(p, \gamma)^{13}N$ $^{14}N(p,\gamma)^{15}O$ $^{15}N(p,\gamma),(p,\alpha)^{16}O,^{12}C$ $^{17}O(p,\gamma),(p,\alpha)^{18}F,^{14}N$ $^{18}O(p,\gamma),(p,\alpha)^{19}F,^{15}N$ $^{19}F(p,\gamma),(p,\alpha)^{20}Ne,^{16}O$

JUNA plan He burning $^{12}C(\alpha, \gamma)^{16}O$ $^{16}O(\alpha, \gamma)^{20}Ne$ 20 Ne(α , γ) 24 Mg $^{18}O(\alpha, \gamma)^{22}Ne$ $^{22}Ne(\alpha, \gamma)^{26}Mg$ $^{24}Mg(\alpha,\gamma)^{28}Si$ n source $^{13}C(\alpha,n)^{16}O$

 $^{22}Ne(\alpha,n)^{25}Mg$

²⁵Mg(α,n)²⁸Si

 $^{26}Mg(\alpha, n)^{29}Si$

C, O burning 12C+12C 12C+16O 16O+16O

 γ astronomy ²⁵Mg(p, γ)²⁶AI :

JUNA

³He(³He,2p)⁴He $^{7}Be(p,\gamma)^{8}B$ $^{12}C(p, \gamma)^{13}N$ $^{14}N(p,\gamma)^{15}O$ $^{15}N(p,\gamma),(p,\alpha)^{16}O,^{12}C$ $^{17}O(p,\gamma),(p,\alpha)^{18}F,^{14}N$ $^{18}O(p,\gamma),(p,\alpha)^{19}F,^{15}N$ $^{19}F(p,\gamma),(p,\alpha)^{20}Ne,^{16}O$

H burning

³He(α,γ)⁷Be

 2 H(α,γ)⁶Li

n source ¹³C(α,n)¹⁶O ²²Ne(α,n)²⁵Mg ²⁵Mg(α,n)²⁸Si ²⁶Mg(α,n)²⁹Si

 γ astronomy ²⁵Mg(p, γ)²⁶Al :

JUNA-II

C, O burning

 $^{12}C + ^{12}C$

16O + 16O

He burning $^{12}C(\alpha,\gamma)^{16}O$ $^{16}O(\alpha,\gamma)^{20}Ne$ $^{20}Ne(\alpha,\gamma)^{24}Mg$ $^{18}O(\alpha,\gamma)^{22}Ne$ $^{22}Ne(\alpha,\gamma)^{26}Mg$ $^{24}Mg(\alpha,\gamma)^{28}Si$

JUNA plan

JUNA-I

43/49

OMEG

The 13th international symposium on Origin of Matter and Evolution of Galaxies (OMEG 2015) June 24-27, 2015 Beijing, China

The 14th will be in Korea in 2017!

29th IAU General Assembly August 01 - 14, 2015, Honolulu

JUNA

Solution of the second progress in China

- In-direct approach still productive, decay and mass measurement get new finding
- RI facilities in Beijing and China give a contribution word forces
- Underground JUNA will open up new frontier
- More collaboration needed to nuclear physics and nuclear astrophysics in Asia, in which ANPhA will take an active role