Status Report

Jae Beom Park

1

• COSMUS

• Intrinsic Time Resolution Measurement

• J-PARC E42 FAC

 Data analysis with Minho, Shinhyung, Wooseung, Junlee, Dr. Jong-won Lee, Dr. Sanghoon Hwang (J-PARC), Dr. Sun-young Ryu (Osaka Univ.)

• LAMPS

- Charged Particle Mass Fitting
- Neutron Detector

<u>COSMUS</u>

Intrinsic Resolution

Choose 3 Scintillators

•
$$\sigma_{12} = \operatorname{sqrt}(\sigma_1^2 + \sigma_2^2)$$

• $\sigma_{23} = \operatorname{sqrt}(\sigma_2^2 + \sigma_3^2)$
• $\sigma_{13} = \operatorname{sqrt}(\sigma_1^2 + \sigma_3^2)$

COSMUS Trigger Setup

COSMUS Trigger Setup

COSMUS Event Selection

J-PARC E42 FAC Test at SPring-8 with the LEPS Experiment

<Neutron Bar>

: Scintillator in horizontal direction perpendicular to the TOF wall with full coverage of all TOF counters behind the TOF wall

- Determine the ToF Counter & Neutron Bar of which the particle passes when it enters the E42 FAC
- Confirm the time resolution of those ToF counter
- Simulation to calculate the ratio of particles between the ToF & FAC (Shinhyung & Wooseung)

LAMPS – Charged Particle

Charged Particle

LAMPS – Neutron Detector

ToF distance : 100cm

[Side View]

[Front View]

One more test for 2.5cm thickness CsI detector

Back-up

Simultaneous measurement problem

• CsI detector is too close to the source

• Possibility of gamma & neutron go inside the CsI simultaneously

• Cannot distinguish the gamma and neutron signal in the CsI detector

ToF distance : 100cm

For example

- 1. One neutron signal in neutron detector and one signal in CsI detector
- 2. Scattered neutron signal? OR neutron signal with no CsI interaction and gamma or neutron signal in CsI

FADC Neutron Detector Test Report

- 1. Neutron Detector experiment without CsI blocking measuring only Neutron Detector
- 2. Same test with CsI blocking measuring only Neutron Detector
- 3. CsI test for two sources (Cf-252 & Co-60)

Simultaneous measurement **problem** CsI **Neutron Detector** 🛪 Gamma Signal or Neutron Signal Cf-252 **Neutron Signal** CsI **Neutron Detector Neutron Signal** Cf-252 **Scattered Neutron Signal**

Fraction of Entries

(1/Time)(dN/dt)

Summary of the Si-Csl effect

Effect of Si-Csl Detector

Effect of Si-Csl Detector

Full Geometry

1 super module = 4 unit detector

Forward Detector Wall : Cover Range 0 ~ 36 degree, ToF Dist. : 1.3m # of unit detector 84

Sphere Detector : Cover Range 36 ~ 144 degree, ToF Dist. : 1.1m # of unit detector 368

Total # of unit detector $(0 \sim 144 \text{ degree}) = 452$ Total # of unit detector $(0 \sim 90 \text{ degree}) = 268$

Theta angle	Phi angle division	# of super (unit detector)
45 degree	30.0 degree	12 (48)
81 degree	22.5 degree 20.0 degree	16 (64) 18 (72)
99 degree	20.0 degree	18 (72)
117 degree	22.5 degree	16 (64)
135 degree	30.0 degree	12 (48)

Design of Si/Csl for LAMPS-L

Charged Particle for CsI(Tl) Detector

Photon for CsI(Tl) Detector

Det.CoverRange

	N_gen(∆θ)	N_det(∆θ)	Det.CovRange (%) (simulation)	Det.CovRange (%)Det.CovRange (%)#(simulation)(geometrical)D		Occupancy
1 : (17.5°<θ<32.5°)	2.67	1.53	57.25	58.43	0.191	0.0156
2 : (32.5°<θ<47.5°)	1.98	1.14	57.56	57.62	0.095	0.0077
3 : (47.5°<θ<62.5°)	1.71	1.14	66.88	67.81	0.063	0.0052
4 : (62.5°<θ<77.5°)	1.17	0.73	62.33	65.69	0.037	0.0030
5 : (77.5°<θ<102°)	1.10	0.84	76.36	79.11	0.056	0.0046
6 : (102°<θ<126°)	0.56	0.37	67.47	70.70	0.031	0.0025
7 : (126°<θ<150°)	0.25	0.14	57.03	64.35	0.018	0.0014

PID : dE – E method

(used AMD events. Csl thickness : 5cm)

Geant4 Simulation

- Package 1 : Hadron Physics Hadron Physics QGSP_BERT
- Package 2 : Hadron Physics Hadron Physics QGSP_BIC
- Package 3 : Hadron Physics G4HadronElasticPhysics
- Package 4 : Decay Physics G4RadioactiveDecayPhysics
- Tested 5 different combinations

Default	Default
Opt.1	Default+Pack.1
Opt.2	Default+Pack.1 +Pack.2
Opt.3	Default+Pack.1+Pack.3 +Pack.4
Opt.4	Default+Pack.1+Pack.2 +Pack.3 +Pack.4

Response of Neutron Detector

<u>Kinetic Energy vs Scattering Angle</u> (Csl Thickness : 5cm)

<u>Csl thickness effect on</u> <u>charged particle</u>

<Proton Isotope AMD Generated Events>

Gamma Efficiency

Summary & Plan

- Charged Particle full absorption check veto scintillator?
- Background, Efficiency study for scattering neutrons in Csl – Paper? Experiment?

Effect of Si-Csl Detector

Effect of Si-Csl Detector

<u>Neutron Scattering Angle in Csl</u> (10MeV, 10000events, 5cm)

<u>Neutron Scattering Angle in Csl</u> (10MeV, 10000events, 4cm)

Lab Meeting 2015-07

<u>Neutron Scattering Angle in Csl</u> (10MeV, 10000events, 3cm)

Lab Meeting 2015-07

<u>Neutron Scattering Angle in Scint</u> (10MeV, 10000events)

AMD & PHITS Neutron

<u>Kinetic Energy Detector & AMD</u> <u>Generator Events</u>

$^{132}Sn+^{124}Sn - AMD&PHITS$

	AMD	PHITS		
Number of Events	N(event) = 2010	N(event) = 272018		
Number of particles (per event)	<n> = 62.047</n>	<n>=52.040</n>		
Number of Neutrons (per event)	< neutron> = 49.783 (80.23%)	< neutron>=33.138 (63.68%)		
Number of Charged Particles (per event)	< charged>= 12.265 (19.77%)	< charged>=15.986 (30.72%)		
Number of Protons (per event)	< proton> = 5.213 (8.40%)	<pre></pre>		
Number of Gammas	no gammas	<gammas>=2.916 (5.60%)</gammas>		

<u>Neutron Scattering Angle in Csl</u> (10MeV, 10000events, 2.5cm)

: PHITS, **Photons**

< N_{photon} > = N_{Det}×R (for Csl Detector)

S : Area of one detector ($X=\sqrt{S}$), **r**= 40cm (Distance from target),

 $N(\Delta \theta)$: Number of particles per event, N_Det : Number of detectors.

Bin	N(∆θ)	N_Det	S(cm^2)	X(cm)	R
1 : (17.5°<θ<32.5°)	0.19	8	81.0	9.0	0.024
2 : (32.5°<θ<47.5°)	0.28	12	81.0	9.0	0.023
3 : (47.5°<θ<62.5°)	0.34	0.34 18 81.0		9.0	0.019
4 : (62.5°<θ<77.5°)	0.38	20	81.0	9.0	0.019
5 : (77.5°<θ<102°)	0.61	15	225.0	15.0	0.041
6 : (102°<θ<126°)	0.51	12	225.0	15.0	0.043
7 : (126°<θ<150°)	0.35	8	225.0	15.0	0.044
Sum	2.66	93			

: PHITS AMD, Charged Particles

 $< N_{charged} > = N_{Det} \times R$ (for Si Detector)

S : Area of one detector ($X=\sqrt{S}$), **r**= 40cm (Distance from target),

 $N(\Delta \theta)$: Number of particles per event, N_Det : Number of detectors.

Bin	N(∆θ)	N_Det	S(cm^2)	X(cm)	R	N(∆θ)	N_Det	S(cm^2)	X(cm)	R	
1 : (17.5°<θ<22.5°)	0.99	24	9.0	3.0	0.041	0.99	24	9.0	3.0	0.041	
2 : (22.5°<θ<27.5°)	1.05	24	9.0	3.0	0.044	0.87	24	9.0	3.0	0.036	
3 : (27.5°<θ<32.5°)	1.02	24	9.0	3.0	0.043	0.81	24	9.0	3.0	0.033	
4 : (32.5°<θ<37.5°)	1.00	36	9.0	3.0	0.028	0.68	36	9.0	3.0	0.019	
5 : (37.5°<θ<42.5°)	1.00	36	9.0	3.0	0.028	0.68	36	9.0	3.0	0.019	
6 : (42.5°<θ<47.5°)	1.00	36	9.0	3.0	0.028	0.63	36	9.0	3.0	0.018	
7 : (47.5°<θ<52.5°)	0.97	54	9.0	3.0	0.018	0.62	54	9.0	3.0	0.011	
8 : (52.5°<θ<57.5°)	0.92	54	9.0	3.0	0.017	0.59	54	9.0	3.0	0.011	
9 : (57.5°<θ<62.5°)	0.84	54	9.0	3.0	0.016	0.49	54	9.0	3.0	0.010	
10 : (62.5°<θ<67.5°)	0.76	60	9.0	3.0	0.013	0.42	60	9.0	3.0	0.008	
11 : (67.5°<θ<72.5°)	0.68	60	9.0	3.0	0.011	0.39	60	9.0	3.0	0.007	
12 : (72.5°<θ<77.5°)	0.58	60	9.0	3.0	0.010	0.36	60	9.0	3.0	0.006	
13 : (77.5°<θ<86°)	0.82	45	25.0	5.0	0.018	0.45	45	225.0	15.0	0.010	
14 : (86°<θ<94°)	0.60	45	25.0	5.0	0.014	0.38	45	225.0	15.0	0.008	
15 : (94°<θ<102°)	0.46	45	25.0	5.0	0.010	0.27	45	225.0	15.0	0.006	
16 : (102°<θ<110°)	0.36	36	25.0	5.0	0.010	0.21	36	225.0	15.0	0.006	
17 : (110°<θ<118°)	0.28	36	25.0	5.0	0.008	0.18	36	225.0	15.0	0.005	
18 : (118°<θ<126°)	0.22	36	25.0	5.0	0.006	0.16	36	225.0	15.0	0.004	
19 : (126°<θ<134°)	0.17	24	25.0	5.0	0.007	0.11	24	225.0	15.0	0.005	
20 : (134°<θ<142°)	0.13	24	25.0	5.0	0.005	0.08	24	225.0	15.0	0.003	
21 : (142°<θ<150°)	0.10	24	25.0	5.0	0.004	0.06	24	225.0	15.0	0.003	
Sum	13.95	837				9.43	837				43

: PHITS AMD, Neutron

 $< N_{neutron} > = N_{Det} \times R$ (for Neutron Detector)

S : Area of one detector ($X=\sqrt{S}$), **r**= 300cm (Distance from target),

 $N(\Delta \theta)$: Number of particles per event, **N_Det** : Number of detectors.

Bin	N(∆θ)	N_Det	S(cm^2)	X(cm)	R	N(∆θ)	N_Det	S(cm^2)	X(cm)	R	
1 : (0°<θ<5°)	0.37	14	100.0	10.0	0.026	0.66	14	100.0	10.0	0.047	
2 : (5°<θ<10°)	1.09	36	100.0	10.0	0.030	2.13	36	100.0	10.0	0.059	
3 : (10°<θ<15°)	1.74	64	100.0	10.0	0.027	3.01	64	100.0	10.0	0.047	
4 : (15°<θ<20°)	2.25	96	100.0	10.0	0.023	3.66	96	100.0	10.0	0.038	
5 : (20°<θ<25°)	2.59	128	100.0	10.0	0.020	4.18	128	100.0	10.0	0.033	
6 : (25°<θ<30°)	2.76	158	100.0	10.0	0.017	4.28	158	100.0	10.0	0.027	
7 : (30°<θ<35°)	2.78	188	100.0	10.0	0.015	4.07	188	100.0	10.0	0.022	
8 : (35°<θ<40°)	2.66	216	100.0	10.0	0.012	3.85	216	100.0	10.0	0.018	
9 : (40°<θ<45°)	2.46	242	100.0	10.0	0.010	3.47	242	100.0	10.0	0.014	
10 : (45°<θ<50°)	2.21	266	100.0	10.0	0.008	3.24	266	100.0	10.0	0.012	
11 : (50°<θ<55°)	1.93	288	100.0	10.0	0.007	2.63	288	100.0	10.0	0.009	
12 : (55°<θ<60°)	1.67	308	100.0	10.0	0.005	2.20	308	100.0	10.0	0.007	
13 : (60°<θ<77°)	3.97	1141	100.0	10.0	0.003	5.57	1141	100.0	10.0	0.005	
14 : (77°<θ<94°)	2.16	1281	100.0	10.0	0.001	3.11	1281	100.0	10.0	0.002	
15 : (94°<θ<111°)	1.18	1225	100.0	10.0	0.001	1.77	1225	100.0	10.0	0.001	
16 : (111°<θ<128°)	0.66	1036	100.0	10.0	0.0006	0.96	1036	100.0	10.0	0.0009	
17 : (128°<θ<145°)	0.37	756	100.0	10.0	0.0005	0.58	756	100.0	10.0	0.0007	
Sum	32.85	7443				49.37	7443				Δ Δ