KoBRA for low energy nuclear physics study at RISP

Y.K. Kwon and KOBRA Collaboration

Experimental Systems Team Rare Isotope Science Project IBS, Korea

KPS 2015 fall meeting @ Gyeongju

Experimental Systems at RAON

Institute for Basic Science

Rare Isotope

Science Project

Overview of RAON and KoBRA

Scientific Program at KOBRA

- Nuclear Structure
 - Study of shell evolution in proton- and neutron-rich nuclei: Measurements of excitation energy and angular distribution Determination of nucleon occupancy in single particle orbit (inelastic scattering, (d,p) reaction, nucleon removal reaction, and so on)
 - Study of soft dipole and Pygmy dipole resonances using nuclear probe, e.g., α, Ca and Pb: Measurements of excitation energy and angular distribution

(Bound state: Y ray spectroscopy, unbound state: missing mass method)

- Study of shape coexistence
- Cluster structure
- And others ...
- Nuclear Astrophysics
 - Direct measurement of charged-particle capture cross section, e.g., for $^{65}As(p, \Upsilon)$ and $^{15}O(\alpha, \Upsilon)$ reactions at < ~1 MeV/nucleon
 - Indirect measurement of radiative capture cross section, e.g., for (d,p) reaction at a few MeV/nucleon

Overview of KoBRA

- RI beam production at a few MeV/nucleon and about 20 MeV/nucleon (production mode) Reaction: (p,n), (d,p), (d,n), and (3He,n) at a few MeV/nucleon multi-nucleon transfer reactions at about 20 MeV/nucleon
- Recoil mass separator at about 1 MeV/nucleon (radiative capture mode)

Stage 1 + Stage 2

- Recoil mass separator at about 1 MeV/nucleon
- High-resolution separator at a few MeV/nucleon (dispersion matching mode)

Optical design for Production mode in Stage 1

Table 1: Optical design parameters of KOBRA stage 1 for the production mode at an energy of ~ 20 MeV/nucleon. The magnifications in horizontal and vertical directions and momentum dispersion are listed for each focal plane, F1, F2, and F3.

	(x x)	$(x \delta)$	(y y)
F1	0.9	4.0 cm/%	-5.3
F2	-3.2	0.0	3.0
F3	3.4	0.0	4.6
Mor	nentum acceptance	$\Delta p/p$	$p = \pm 4\%$
An	gular acceptances	$\theta_x \approx \pm 40 \text{ mra}$	d, $\theta_y \approx \pm 100 \text{ mrad}$

• Selection of rays of a 5th order optics calculation (COSY infinity)

Figure 2: (Color online.) Horizontal and vertical rays of KOBRA stage 1 for the production mode from the 5th order ion-optics calculation with switched-off Wien filter. Beam trajectories with an angular spreads of ±40 mrad (±100 mrad) in horizontal (vertical) plane are shown. The blue-, green- and red-solid lines correspond to the trajectories with $\Delta p/p = +4\%$, 0% and -4%, respectively.

Momentum resolving power: $D_p/(2x_0M) = 2200$

Optical design for Radiative Capture mode in Stage 1

Wien filter 1 specification

- Effective length: 2.5 m
- Full gap between electrodes: 15 cm
- Maximum electric field: 2.7 kV/mm (±200 kV)
- Maximum magnetic field: 0.3 T

Figure 3: (Color online.) 1 MeV/nucleon ⁶⁶Se¹⁹⁺ rays of KOBRA stage 1 for the radiative capture mode from the first order ion-optics calculation. Beam trajectories with an angular spreads of ±15 mrad (±15 mrad) in horizontal (vertical) plane are shown. The blue-, green- and red-solid lines correspond to the trajectories with $\Delta p/p = +1.5\%$, 0% and -1.5%, respectively, where $\Delta m/m$ is ±1/66.

Mass resolving power: $D_m/(2x_0M) = 720$ for ${}^{66}Se^{19+}$ at 1 MeV/nucleon

Optical design for **Dispersion matching mode**

Magnet design

• Curved-edge bending magnet (bending radius: 2 m, bending angle: 60°)

Figure 4: (Color online.) Layout of the curved-edge bending magnet D1. The center field distributions in the midplane (y = 0) for low (B = 0.12 T) and high (B = 1.52 T) field strengths are shown as calculated using the finite-element code OPERA 3D.

Similar with that of D2 of the high resolution SHARAQ spectrometer

-0.1

-800

-600

-400 -200

Qaudrupole magnets

Small quadrupole magnet

0 200

z position (mm)

400 600

800

Cross section of bending magnet

Effective field boundary curves

Large quadrupole magnet

Aperture radius: 205 mm Field gradient: 3.4 T/m

Development of a ray tracing code

• A ray-tracing code has been developed taking into account beam profile, geometry, magnetic field distributions, energy losses, multiple scatterings in materials, detector resolutions, and charge distribution.

Wien filter: B = 0.06 T, E = 0.28 kV/mm (near hard edge fringing field distribution)

2.5 m

We have confirmed that the first order transfer matrix elements extracted from the ray tracing code are consistent with those of the calculation using COSY infinity.

Production of ⁴⁴Ti at 25 MeV/nucleon (example)

 Production model (multi-nucleon transfer): Deep Inelastic Transfer (DITm) + GEMINI

22 10^{2} DITm: L. Tassan-Got and C. Stefan, Nucl. Phys. A524, 121 (1991). 20 G. A. Souliotis et al., Phys. Rev. Lett. 91, 022701 (2003). M. Veselsky and G. A. Souliotis, Nucl. Phys. A 765, 252 (2006). 10 18 GEMINI (statistical model): R. Charity et al., Nucl. Phys. A 483, 371 (1991). 16 Cocktail beam (44Ti:15 MeV/u with 10⁵ pps) 560 580 600 620 640 m/q (arbitray unit) **F3**: PPAC (C₂H₆, 35 mm, 10 torr) 10^{4} Counts 45Ti²²⁺ b) Si detector (25 μ m) 46Ti22+ 44Ti²²⁺ F2: PPAC (C₂H₆, 35 mm, 10 torr) Plactic detector (0.1 mm) 10^{3} 47Ti22+ **Cocktail beam Production mode** $^{14}\text{Ti}^{21+}$ 10^{2} =43Ti22+ • $B\rho$ -TOF- ΔE method is employed to F1: PPAC (C₂H₆, 35 mm, 10 torr) identify the fragments. 10 ⁴⁶Ti at 25 MeV/nucleon (1 pnA) **F0**: 0.1 mm-thick ¹²C target 580 560 600 620 m/q (arbitray unit)

N

24

a)

44Ti²²⁺

• Intensity of ⁴⁴Ti and Cocktail Beam for 1 pnA ⁴⁶Ti primary beam

Target	Cocktail beam at F1	Cocktail beam at F2	Cocktail beam at F3	⁴⁴ Ti at F3	Energy of ⁴⁴ Ti at F3
¹² C (0.1mm)	2.5 × 10 ⁶ pps	1.7 × 10 ⁶ pps	1.6× 10 ⁶ pps	1.4 × 10 ⁵ pps	14.61 MeV/u

Production of ⁶He at 20 MeV/nucleon (example)

Production model (multi-nucleon transfer): Deep Inelastic Transfer (DITm) + GEMINI

40

⁶He secondary beam can be physically separated by employing the flat degrader after optical tuning.

 $9^{\circ} - 20^{\circ}$

Measurement of Isoscalar Soft dipole Resonance for ⁶He(d,d') ⁶He^{*} (example)

- Isoscalar Soft Dipole Resonance (ISDR) can be strongly excited by isoscalar probe, e.g., (d,d') and (α,α') . ٠
- Very recently, evidence for excitation of ISDR was obtained in an inelastic scattering of ¹¹Li with a deuteron target. L.V. Chulkov et al., Eur. Phys. J. A (2015) 51: 97 R. Kanungo et al., Phys. Rev. Lett. 114, 192502 (2015) Circular ΔE -E detector
- The evidence for ISDR in ⁶He has been no observed so far.

Momenta of d and ⁶He are isotropically generated in the center of momentum system of d + ⁶He^{*}. Momenta of 4 He + 2n are generated in uniform phase space using Dalitz plot, in the center of momentum system of ⁶He^{*}.

20

10

30

40

50

Ref. for excitation energies in ⁶He: X. Mougeot et al., Phy. Lett. B 718 (2012) 441-446

Calculations of intensity of secondary beam using stable beam

Production model (multi-nucleon transfer): Deep Inelastic Transfer (DITm) + GEMINI

		Production	Angular acceptance	Energy acceptance	losses by q distribution	Primary beam	Traget	FO	F3	F3
		Cross section (mb)	< +/-50 mrad	F1 slit (+/-10 cm): dE=+/- 4%	No losses	1 pnA B11(30 MeV/u)	0.1 mm-Be9	Energy	Intensity	Energy
Ζ	Α					pps	atoms/cm2	MeV/nucleon	pps	MeV/nucleon
Н	3	141. [,]	4 0.036	0.079	1	6.25E+09	1.23E+21	24.66	3.09E+03	24.34
He	8	0.	1 0.105	0.141	1	6.25E+09	1.23E+21	23.35	1.14E+01	22.84
Li	11	0.0	8 0.305	0.166	1	6.25E+09	1.23E+21	22.53	3.11E+01	21.66
Be	12	0.6	2 0.709	0.231	1	6.25E+09	1.23E+21	21.21	7.81E+02	19.71
В	13	0.5	6 0.688	0.421	1	6.25E+09	1.23E+21	22.1	1.25E+03	19.98

RIPS: 300 pnA

		Production	Angular acceptance	Energy acceptance	losses by q distribution	Primary beam	Traget	FO	F3	F3
		Cross section (mb)	< +/-50 mrad	F1 slit (+/-10 cm): dE=+/- 4%	No losses	1 pnA C12(30 MeV/u)	0.1 mm-Be9	Energy	Intensity	Energy
Z	Α					pps	atoms/cm2	MeV/nucleon	pps	MeV/nucleor
Н	3	90.9	5 0.041	0.081	1	6.25E+09	1.23E+21	24.69	2.32E+03	24.37
Li	9	2.63	3 0.159	0.185	1	6.25E+09	1.23E+21	22.9	5.95E+02	21.85
Be	12	0.3	1 0.716	0.205	1	6.25E+09	1.23E+21	21.16	3.50E+02	19.65
В	13	0.82	2 0.565	0.226	1	6.25E+09	1.23E+21	21.5	8.05E+02	19.32
В	8	0.23	3 0.178	0.114	1	6.25E+09	1.23E+21	22.63	3.59E+01	19.17
С	9	0.032	2 0.482	0.161	1	6.25E+09	1.23E+21	24.04	1.91E+01	19.77
N	12	0.2	2 0.608	0.224	1	6.25E+09	1.23E+21	22.65	2.09E+02	18.02
		RIPS: 400 pnA								

F3 Production Angular acceptance Energy acceptance losses by q distribution **Primary beam** F3 Traget Cross section (mb) < +/-50 mrad F1 slit (+/-10 cm): dE=+/- 4% No losses 1 pnA O18 (30 MeV/u) 0.1 mm-Be9 Intensity Energy MeV/nucleon Ζ pps atoms/cm2 MeV/nucleon pps Li 6.08 0.121 0.2 6.25E+09 1.23E+21 25.86 1.13E+03 24.91 1 1.23E+21 25.43 4.56E+02 Be 1.74 0.142 0.24 6.25E+09 24.14 1 1.23E+21 0.43 0.225 0.23 6.25E+09 24.75 1.71E+02 23.09 В 1 1.23E+21 2.23E+02 24.09 С 0.2 0.448 0.324 1 6.25E+09 26.12 0.25 0.597 0.402 1 6.25E+09 1.23E+21 26.14 4.61E+02 24.65 Ν 0 0.33 6.25E+09 1.23E+21 27.27 1.85E+03 24.27 0.808 0.901 1 RIPS: 500 pnA

Primary beam intensity at RIPS were taken from http://www.nishina.riken.go.jp/RIBF/RIPS/intensity.html

Beam rejection for p(⁶⁵As,⁶⁶Se)γ at 1 MeV/nucleon (example)

Radiative-capture (p, Υ) reaction on ⁶⁵As in inverse kinematics

Since the magnetic rigidity difference between 65 As and 66 Se is only about 10⁻⁴ for the same charge state of ~20+, i.e. too small for a separation, the Wien filter is utilized to separate 66 Se from 65 As on the basis of their mass differences.

with 350 nm-thick Al stripper foil

- Beam size, angular spread, and momentum spread of ⁶⁵As at FO are represented by Gaussian distributions with $\sigma = 1$ mm, 1 mrad, and 0.1%, respectively.
- If we can neglect the non-Gaussian tail of the beam and other background sources like scattering and charge exchange on residual gas and vacuum chamber walls.
- The separation can be further improved by utilizing the second Wien filter of KOBRA stage 2.

Figure 6: (Color online.) (a) Simulated position distributions of 65 As and 66 Se at F3 for the $p({}^{65}$ As, 66 Se) γ reaction at an energy of 1 MeV/nucleon. The bluesolid line represents the best fit result obtained using a linear combination of three Gaussian functions. (b) Tail of the fitted distribution of 65 As (blue-dashed line) and the position distribution of 66 Se, assuming that the yield of 65 As is higher then that of 66 Se by 15 order of magnitudes (see text).

Planning and Man power for KoBRA

Planning

• Present man-power

	KOBRA group (RISP)	Other group (RISP)	Collaboration	
Stage 1 design	Dr. K. Tshoo Mr. J. Park (student) Mr. H. Chae (student)	Mr. Z. Aziz	S. Kubono (RIKEN) S. Kato (Yamagata Univ.) G. Souliotis (Univ. of Athens)	
Stage 2 design	Dr. T. Hashimoto Dr. Y. Satou	Mr. Z. Aziz	G.P.A. Berg (Univ. of Notre Dame) N. Iwasa (Tohoku Univ.) H. Yamaguchi (CNS)	
Production target		Dr. H.J. Woo	K. I. Hahn (Ewha), K. Chae (SKKU), S. Choi (SNU) C.S. Lee (CAU), CB. Moon (Hoseo) Y.K. Kim (Hanyang)	Kä

Summary

- The KOBRA facility is being designed for the RI beam production using multi-nucleon transfer reaction at an energy of 20 MeV/nucleon and for high background rejection for direct measurements of radiative-capture cross sections in the astrophysical energy range.
- We have performed a Monte Carlo simulation of ⁴⁴Ti and ⁶He productions, as examples, showing clear separation.
- The simulated position distributions of ⁶⁵As and ⁶⁶Se for the p(⁶⁵As, ⁶⁶Se) reaction at an energy of 1 MeV/nucleon are indicative of a possibility of high rejection of the beam in KOBRA.
- We expect that KOBRA will give the opportunity to study the nuclear structure of exotic nuclei in the energy range of 10 20 MeV/nucleon, as well as a variety of astrophysically interesting reactions.
- Construction of KOBRA facility will be completed in early of 2020, and Day-1 experiment will be performed in 2020.

More information...

KOBRA progress report 2014

KOBRA progress report 2015

KOBRA indico page <u>http://indico.risp.re.kr/indico/index.py</u> (needs to register) contact : Young Kwan Kwon (<u>ykkwon@ibs.re.kr</u>) , Kyung Ho Tshoo (<u>tshoo@ibs.re.kr</u>)

Thank you for your attention !

