Activities of nuclear physics theory at RISP

Ju Hee Hong, Kyungil Kim, Youngman Kim, Yeunhwan Lim, Won Gi Paeng, Ik Jae Shin, Young Ho Song, Panagiota Papakonstantinou

RISP, IBS

Theory activities at RISP

• Boundaries of the nuclear landscape

– Covariant density functional theory

- Production of exotic nuclei and heavy elements
	- Reaction models (DNS, …), reactions for astrophysics
- Equation of state of dense matter
	- New vibrational modes and asymmetric matter
	- Symmetry energy of dense matter
- Neutron stars
- Nuclear structure and reactions from first principles
	- Ab initio NCSM ...
	- Unitarily transformed realistic interactions
- Nuclear transport: quantum molecular dynamics
- Chiral effective field theory, parity doublet model,

Covariant Density Functional Theory

- Nuclear energy density functional has played an important role in the self-consistent description of nuclei
- Simple idea : particle exchange \rightarrow point coupling

• Successful to describe the properties of finite nuclei, neutron rich nuclei (PC-LA, PC-F1, DD-PC1, PC-PK1)

• Lagrangian density of the point-coupling model

$$
\mathcal{L} = \mathcal{L}^{\text{free}} + \mathcal{L}^{\text{4f}} + \mathcal{L}^{\text{der}} + \mathcal{L}^{\text{em}}
$$

where

$$
\mathcal{L}^{\text{free}} = \bar{\psi}(i\gamma_{\mu}\partial^{\mu} - m)\psi ,
$$

\n
$$
\mathcal{L}^{\text{hot}} = -\frac{1}{3}\beta_{S}(\bar{\psi}\psi)^{3} - \frac{1}{4}(\bar{\psi}\psi)^{4} - \frac{1}{4}\gamma_{V}[(\bar{\psi}\gamma_{\mu}\psi)(\bar{\psi}\gamma^{\mu}\psi)]^{2} ,
$$

\n
$$
\mathcal{L}^{\text{der}} = -\frac{1}{2}\delta_{S}\partial_{\nu}(\bar{\psi}\psi)\partial^{\nu}(\bar{\psi}\psi) - \frac{1}{2}\delta_{V}\partial_{\nu}(\bar{\psi}\gamma_{\mu}\psi)\partial^{\nu}(\bar{\psi}\gamma^{\mu}\psi)
$$

\n
$$
-\frac{1}{2}\delta_{TS}\partial_{\nu}(\bar{\psi}\vec{\tau}\psi)\partial^{\nu}(\bar{\psi}\vec{\tau}\psi) - \frac{1}{2}\delta_{TV}\partial_{\nu}(\bar{\psi}\vec{\tau}\gamma_{\mu}\psi)\partial^{\nu}(\bar{\psi}\vec{\tau}\gamma^{\mu}\psi)
$$

\n
$$
\mathcal{L}^{\text{em}} = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} - e\frac{1-\tau_{3}}{2}\bar{\psi}\gamma^{\mu}\psi A_{\mu}
$$

• Numerical equations (for finite nuclei) to solve within RCHB forma lism (Relativistic Continuum Hartree Bogoliubov)

$$
\sum_{\beta} \begin{pmatrix} h_{\alpha\beta} - \lambda \delta_{\alpha\beta} & \Delta_{\alpha\beta} \\ -\Delta_{\alpha\beta}^* & -h_{\alpha\beta}^* + \lambda \delta_{\alpha\beta} \end{pmatrix} \begin{pmatrix} U_{\beta\mu} \\ V_{\beta\mu} \end{pmatrix} = E_{\mu} \begin{pmatrix} U_{\alpha\mu} \\ V_{\alpha\mu} \end{pmatrix}
$$

The pairing potential reads,

$$
\Delta_{kk'}(\mathbf{r},\mathbf{r}') \quad = \quad -\sum_{\tilde{k}\tilde{k}'} \mathbf{V}_{kk',\tilde{k}\tilde{k'}}(\mathbf{r},\mathbf{r}') \kappa_{\tilde{k}\tilde{k'}}(\mathbf{r},\mathbf{r}')
$$

with the pairing tensor $\kappa = U^* V^T$ and a density-dependent delta pairing force

$$
V^{pp}(\mathbf{r_1}, \mathbf{r_2}) = V_0 \delta(\mathbf{r_1} - \mathbf{r_2}) \frac{1}{4} (1 - P^{\sigma}) (1 - \frac{\rho(\mathbf{r_1})}{\rho_0}).
$$

 $\rm V_{0}$ = 685 MeV fm³: fixed by experimental odd-even mass differences of Ca isotopes, Sn isotopes, N=20 isotones and N=50 isotones.

- First mass table using PC-PK1 : 1D code
	- 9035 Bound nuclei from Z=8 to Z=120
	- For 234 exp. known nuclei ($Z=8$ to $Z=22$) : $\sigma = 2.23$ MeV
	- For 2331 exp. known nuclei (Z=8 to Z=120) : σ = 7.91 MeV

Number of more bound nuclei than FRDM

Mostly, due to the proper treatment of pairing correlations in the continuum, the neutron drip line predicted by RCHB theory are more neutron-rich than other mass models; also, our mass table differs from the others (1) functional (PC-PK1, relativistic), (2) symmetry (deformed or spherical), etc.

- Application of CDFT (PCPK1) - Proton emission phenomena were investigated $(Z, A) \rightarrow (Z - 1, A - 1) + p + e + \overline{v}$
	- 1D spherical, Potential from PC-PK1, WKB approx.
	- More than 80% of data was explained within factor of 2

DNS (dinuclear system)

Two distinct ways

<Diabatic way>

<Adiabatic way>

DNS

A configuration of two touching nuclei which keep their individuality. In this framework, the compound nucleus is formed by a series of transfers of nucleons from the light nucleus to the heavy one. Important degrees of freedom are the mass asymmetry η , the relative inter-nuclear distance R , deformation (rotation) of the fragments, etc.

$$
\eta = (A_1 - A_2)/(A_1 + A_2)
$$

The dynamics of the DNS is considered as a combined diffusion in the degrees of freedom of the mass asymmetry η and of the relative distance describing the formation of the compound nucleus and the quasi-fission process (decay of the DNS), respectively.

Fusion in DNS

- Evaporation Residue: $\sigma_{xn}(E_{c.m.}) = \sigma_{cap}^{eff}(E_{c.m.}) P_{CN}(E_{c.m.}) W_{xn}(E_{c.m.})$
- $P_{CN} = \frac{1.25 \exp\left[-(B_{fus}^{*} B_{qf})/T_{DNS}\right]}{1 + 1.25 \exp\left[-(B_{fus}^{*} B_{qf})/T_{DNS}\right]}$ • Fusion Probability:

A. S. Zubov, G. G. Adamian, N. V. Antonenko, S. P. Ivanova, W. Scheid (2003)

• Survival Probability: $W_{sur}(E_{CN}^*) = P_{xn}(E_{CN}^*) \prod_{i=1}^n \frac{\Gamma_n(E_{CN,i}^*)}{\Gamma_f(E_{CN,i}^*) + \Gamma_n(E_{CN,i}^*)}$

$$
\frac{\Gamma_n}{\Gamma_f} = \frac{4A^{2/3} a_f [E_{CN}^* - B_n]}{ka_n (2\sqrt{a_f [E_{CN}^* - B_f (E_{CN}^*)] - 1)}} \times \exp\left[2\sqrt{a_n [E_{CN}^* - B_n]} - 2\sqrt{a_f [E_{CN}^* - B_f (E_{CN}^*)]}\right]
$$

- Effective Capture Cross Section: $\sigma_{cap}^{eff}(E_{\text{c.m.}}) = \frac{\pi \hbar^2}{2\mu E_{\text{c.m.}}} \sum_{J=0}^{J_{max}} (2J+1) T_J(E_{\text{c.m.}})$
- $T_J(E_{cm}) = \frac{1}{1+\exp[2\pi\{V_B+\hbar^2J(J+1)/2\mu R_B^2-E_{\rm c.m.}\}/\hbar\omega_B]}$ • Transmission:D. L. Hill, J. A. Wheeler (1953)

 μ_0

$$
\sigma_{cap}^{eff}(E_{\text{c.m.}}) = \frac{\pi \hbar^2 J_{max}^2}{2\mu E_{\text{c.m.}}} \left[1 + \frac{\mu_0}{\zeta} \ln(1 + \exp[\alpha(V_B - E_{\text{c.m.}})]) - \frac{\mu_0}{\zeta} \ln(1 + \exp[\alpha(V_B - E_{\text{c.m.}}) + \zeta/\mu_0]) \right]
$$

= $A_1 A_2/(A_1 + A_2)$ $\alpha = \frac{2\pi}{\hbar \omega_B} \zeta = \frac{\pi \hbar^2 J_{max}^2}{m_0 \hbar \omega_B R_B^2}$

Influence of entrance channel on the production of hassium isotopes

J. Hong, G. G. Adamian, N. V. Antonenko (2015)

Effects of entrance channels on reactions leading to ²²⁰Th compound nucleus

Kyungil Kim, YK, A.K. Nasirov, G. Mandaglio, G. Giardina, Phys.Rev. C91 (2015) 6, 064608

Vibrational modes and asymmetric matter

- Giant and pygmy resonances in ordinary and exotic nuclei
- Symmetry energy as a restoring force?
- Theory of choice: random-phase approximatio n and extensions

Vibrational modes and asymmetric matter

5

- Isoscalar and neutron-pygmy resonanc es in neutron-rich Ni isotopes
	- Isoscalar mode coupled with excess ne utrons leads to bimodal structure
	- Polarizability, neutron skin, affected by shell structure

P.Papakonstantinou, H.Hergert, R.Roth, Phys.Rev. C92 (2015) 3, 034311

- Proton pygmy resonances in loosely b ound $N=20$ isotones
	- $-$ Factors: symmetry energy slope, low paration energy, effective mass
	- paration energy, effective mass

	 Extended wave functions require pro $\frac{25}{9}$

	boundary conditions boundary conditions

Y.Kim, P.Papakonstantinou; arXiv:1509.02259

Nuclear response "from first principles"

- Realistic nuclear interactions: precise fits (e.g., Argonne V18) or ch iral interactions – for more predictive power
- Softening through unitary transformations (UCOM, SRG)
- Application to second order: Second RPA

R.Trippel, P.Papakonstantinou, R.Roth; in preparation

Symmetry energy and the nucleon mass

I. Symmetry energy will be soft for low density below $\sim 2n_0$ while it will be stiff for high density above $\sim 2n_0(n_0=1)$ 0.16 fm $^{-3}$).

W. G. Paeng, T. T. S. Kuo, H. K. Lee and M. Rho, [arXiv:1508.05210 [hep-ph]

Quantum Molecular Dynamics

• RAON

- \triangleright Exotic beams at low and intermediate energies
	- \checkmark Effect of nuclear structure is important in these energies.
	- \checkmark Some transport model codes (AMD, CoMD, ...) are available, but they are still not good enough to describe rare isotope beam.
	- \checkmark Good event generator for RAON is needed for both theoretical and experimental purposes.

Transport model: Model to treat non-equilibrium aspects of the temporal evolution of a collision.

• QMD (Quantum Molecular Dynamics) model

- \checkmark Many-body problem with nucleons
- \checkmark Numerical simulation (event generator)
- \checkmark Early time region in a collision
- \checkmark Different methods with different energies

Transport Model

Central and Peripheral Collisions

Ab initio approaches and interaction

• *ab initio* approaches :

to understand various nuclei "from first principles" only considering nucleon **interactions**

• Interactions :

 Realistic NN interaction comes from meson-exchange(AV18,CD-Bonn), chiral EFT or inverse scattering(JISP16).

3N forces are also important but need large computing resources.

• **PETs(phase equivalent transformations)** can be helpful to obtain more useful *NN* interactions.

(JISP16 vs) Daejeon16

Daejeon16

• Fitted to g.s. energies (including several excited states) of $3H$, $4He$, 6 Li, 12 C, 16 O and 8 He

Parity doublet model

Introduce two nucleon fields that transform in a mirror way under chiral transformations:

 $SU_L(2) \times SU(2)_R$

$$
\psi_{1R} \to R\psi_{1R}, \quad \psi_{1L} \to L\psi_{1L},
$$

$$
\psi_{2R} \to L\psi_{2R}, \quad \psi_{2L} \to R\psi_{2L}.
$$

$$
m_0(\bar{\psi}_2 \gamma_5 \psi_1 - \bar{\psi}_1 \gamma_5 \psi_2)
$$

= $m_0(\bar{\psi}_{2L} \psi_{1R} - \bar{\psi}_{2R} \psi_{1L} - \bar{\psi}_{1L} \psi_{2R} + \bar{\psi}_{1R} \psi_{2L})$

the decay width $\Gamma_{N\pi}$ for $N^*(1535) \rightarrow N + \pi$, $m_0 = 270$ MeV

"Linear sigma model with parity doubling," C. E. DeTar and T. Kunihiro, Phys. Rev. D 39, 2805 (1989)

$$
\mathcal{L} = \bar{\psi}_1 i \partial \psi_1 + \bar{\psi}_2 i \partial \psi_2 + m_0 (\bar{\psi}_2 \gamma_5 \psi_1 - \bar{\psi}_1 \gamma_5 \psi_2)
$$

+ $a \bar{\psi}_1 (\sigma + i \gamma_5 \vec{\tau} \cdot \vec{\pi}) \psi_1 + b \bar{\psi}_2 (\sigma - i \gamma_5 \vec{\tau} \cdot \vec{\pi}) \psi_2$

$$
m_{N\pm} = \frac{1}{2} \left(\sqrt{(a+b)^2 \sigma^2 + 4m_0^2} \mp (a-b)\sigma \right)
$$

The state N+ is the nucleon N(938). while N- is its parity partner conventionally identified with N(1500).

Cf.

$$
\delta \mathcal{L} = -g_\pi \left[\left(i \bar{\psi} \gamma_5 \vec{\tau} \psi \right) \vec{\pi} + \left(\bar{\psi} \psi \right) \sigma \right]
$$

$$
\langle \sigma \rangle = \sigma_0 = f_{\pi}
$$

$$
\langle \pi \rangle = 0
$$

$$
M_N = g_{\pi} \sigma_0 = g_{\pi} f_{\pi}
$$

Cold, dense nuclear matter in a SU(2) parity doublet model

$$
\mathcal{L} = \bar{\psi}_1 i \partial \psi_1 + \bar{\psi}_2 i \partial \psi_2 + m_0 (\bar{\psi}_2 \gamma_5 \psi_1 - \bar{\psi}_1 \gamma_5 \psi_2)
$$

+ $a \bar{\psi}_1 (\sigma + i \gamma_5 \vec{\tau} \cdot \vec{\pi}) \psi_1 + b \bar{\psi}_2 (\sigma - i \gamma_5 \vec{\tau} \cdot \vec{\pi}) \psi_2$
- $g_\omega \bar{\psi}_1 \gamma_\mu \omega^\mu \psi_1 - g_\omega \bar{\psi}_2 \gamma_\mu \omega^\mu \psi_2 + \mathcal{L}_M$,

$$
\mathcal{L}_{M} = \frac{1}{2} \partial_{\mu} \sigma^{\mu} \partial^{\mu} \sigma_{\mu} + \frac{1}{2} \partial_{\mu} \vec{\pi}^{\mu} \partial^{\mu} \vec{\pi}_{\mu} - \frac{1}{4} F_{\mu \nu} F^{\mu \nu} \n+ \frac{1}{2} m_{\omega}^{2} \omega_{\mu} \omega^{\mu} + g_{4}^{4} (\omega_{\mu} \omega^{\mu})^{2} \n+ \frac{1}{2} \bar{\mu}^{2} (\sigma^{2} + \vec{\pi}^{2}) - \frac{\lambda}{4} (\sigma^{2} + \vec{\pi}^{2})^{2} + \epsilon \sigma,
$$

D. Zschiesche, L. Tolos, Jurgen Schaffner-Bielich, Robert D. Pisarski, Phys.Rev. C75 (2007) 055202

If the N' is identified as the $N'(1535)$, the parity doublet model shows a first order phase transition to a chirally restored phase at large densities, $\rho \approx 10\rho_0$, defining the transition by the degeneracy of the masses of the nucleon and the N' . If the mass of the N' is chosen to be 1.2 GeV, then the critical density of the chiral phase transition is lowered to three times normal nuclear matter density,

D. Zschiesche, L. Tolos, Jurgen Schaffner-Bielich, Robert D. Pisarski, Phys.Rev. C75 (2007) 055202

Parity doublet model with HLS

Motivation:

- \bullet Lower m₀?
- Non-zero isospin density (chemical potential)
- \bullet Lower T_c for (chiral) transitions?

$m_0[\mathrm{MeV}]$	500	600	700	800	900
g_1	15.4	14.8	14.2	13.3	12.3
g_2	8.96	8.43	7.76	6.94	5.92
$g_{\omega NN}$	11.4	9.12	7.31	5.67	3.54
$g_{\rho NN}$	8.05	6.97	7.46	7.75	8.75
$\bar{\mu}$ [MeV]	435	434	402	316	109
	40.5	39.4	34.5	22.5	4.26
λ_6	16.3	15.4	13.5	8.66	0.607

TABLE I: Determined model parameters for given m_0 . Here $m_{\omega} = 783$ MeV, $m_{\rho} = 776$ MeV and $\bar{m}\epsilon = m_{\pi}^2 f_{\pi}$.

Note that in free space $m_0 = (270-500)$ MeV

slope parameter

J. Phys. G: Nucl. Part. Phys. 41 (2014) 093001

Summary

- * Boundaries of the nuclear landscape Covariant density functional theory * Production of exotic nuclei and heavy elements Reaction models (DNS, …), reactions for astrophysics * Equation of state of dense matter New vibrational modes and asymmetric matter Symmetry energy of dense matter
- * Neutron stars
- * Nuclear structure and reactions from first principles Ab initio NCSM ...

Unitarily transformed realistic interactions

* Nuclear transport: quantum molecular dynamics

*Chiral effective field theory, parity doublet model, ….

The key word is international/domestic/theory-experiment collaborations!