Rare isotope beam production systems for RISP

Jong-Won Kim

Rare Isotope Science Project Institute for Basic Science Pioneering Session of KPS, Oct. 24, 2015

Layout of accelerators and RI beam production systems

A facility layout with a new concept

Discussion with P. Ostroumov in Nov. 2014, during ICABU workshop, Daejeon

Rare isotope beam facilities worldwide

High power facilities (> 50 kW)

Canada TRIUMF ISAC, ARIEL(e linac) (ISOL) Japan RIKEN RIBF (IF) France GANIL SPIRAL2 (ISOL), Belgium MYRRHA (ISOL) Germany GSI FAIR (IF) USA MSU FRIB (IF) Blue: under construction

Configuration and specification of the IF separator

Design of IF separator building

Power supply room and Counting room

Radiation transport and heating in the target area

High radiation area (pre-separator)

Heat deposits downstream of target Calculated using PHITS

Radiation heat deposit on HTS coils (H75: High temperature superconductor)

HTS coils	Max. po densi [mW/c	ower ity :m³]	Dose desposit [MGy/yr]		Total heat depsoit [W]	
	⁴⁰ Ar	²³⁸ U	⁴⁰ Ar	²³⁸ U	⁴⁰ Ar	²³⁸ U
Q1	13.1	4.0	30.2	9.3	32.5	9.6
Q2	6.1	1.8	14.1	4.2	23.4	7.0
Q3	4.4	2.1	10.0	4.8	9.4	2.8
Dipole	14.8	1.1	34.3	2.6	392	72.6
Q4	14.8	5.1	34.3	11.9	61.7	12.8
Q5	13.1	6.9	30.2	14.7	35.1	7.2
Q6	14.8	8.7	34.3	20.2	95.8	9.8

Major component development

1. High-power graphite target (~100 kW)

- high-power e-beam test for multi-slice target planed
- design of multi-layer target (ANSYS, Comsol.)

2. Beam dump (~350 kW)

- thermo-mechanical analysis and mechanical design
- considerations on remote handling

3. Superconducting magnets with large aperture

- superferric quadrupole triplet and cryostat
- superferric dipole magnet design
- HTC coil quadrupole and dipole

High-power graphite target development

Max. power deposit per slice: ~10 kW

beam

Single-slice target test using 50 kV ebeam at EB-Tech Inc. (2013)

Graphite target system

Vacuum chamber for multi-slice graphite target test (2015)

> Beam dump design for ebeam test at 100 KW

Plan to use 100 kW ~1 MeV e-beam at Budker Institute of Nuclear Science (2016)

ELV series 1-1.4 MeV 100 kW Min. beam dia.: 1 mm

Temp. vs. water flow rate at e-beam dump

 ΔT of water: < 10°C T_{max} on Ti-alloy: < 400°C Water flow: > 4m/s

Beam dump (350 kW) design

Beam dump Horizontal coverage: ± 82.8 cm $\Delta p/p=\pm 36\%$,

Trajectories of primary beam with differing δp in steps of 3%

Beam dump development for high-power HI beam

Design of superferric quadrupole magnet

Hexapole coils for non-linear field effect correction (octupole coils not shown)

Main parameters of Q1&Q2

Item	Value
Max. B gradient	15 T/m
Bmax on coil	4.1 T
Jmax	158 A/cm ²
Total Amp. Turn	~300 kA
Pole tip radius	18 cm
Eff. Length Q1, Q2	55 cm, 90 cm
Yoke length Q1, Q2	45 cm, 80 cm
Yoke outer diameter	100 cm

Parameters of hexapole coil

Inner radius (R1)	160 mm
Coil longth	642.6 m
	m
Straight section (2*H1)	450 mm
Alpha (α), Beta (β)	70°, 90°

Optimization using OPERA3D

Construction of a prototype quadrupole magnet

- Racetrack type
- epoxy molding on coil surface

Hexapole coil

 $\rm I_{op}:$ 162 A ($\rm I_{op}/\rm I_c$ = 36%, 15 T/m)

A large LHe dewar for quadrupole magnet test

Tests in LHe dewar and dewar with cryocoolers

Quad singlet with multipole coils

A dewar with cryocoolers (1.5Wx2 at 4K)

Iron yokes

Development of quadrupole triplet cryostat

Cryostat for quadrupole triplet with multipole coils

- Cryostat design: Korea Basic Science Institute
- Mechanical design: SFA Inc. → To be constructed in 2016

Design specifications

Coolant	Liquid He
Current leads	Vapor cooled type
Heat load (Shield)	~ 30 W (LN2)→ 40K He gas
Heat load at 4.5 K	~ 3.0 W

Design study of LTS dipole magnet

D-shaped LTS coils, Warm iron

Design parameters			
B_{max} , ρ	1.7 T, 6 m		
Bending angle	30 degrees		
Total Amp•turn	162 kA		
B _{peak} on Coil	1.55 T		
Stored energy	0.7 MJ		
Yoke weight	60 tons		
Gap height	17 cm		
Gap width	68 cm		

Decign norometers

Magnetic flux density plot at B=0.89 T, J=15 A/mm²

High-T_c superconductor (HTS) coil winding and test

Specification of prototype

Aperture radius (mm)	120	
Effective length (mm)	579	
Yoke length (mm)	480	
Field gradient (T/m)	15	
Total current (kA)	121	
	864	
Coil size (mm ²)	(36 mm x 12 mm x	
	2)	
Current density (A/mm ²)	140	
Turn number (N)	164 (per coil)	
Operating current (A)	370	
	640 A (SuperPower)	
Critical current	380 A(SuNam)	
Inductance (H)	1.02	
Stored magnetic energy (kJ)	69.8	
Insulation / thickness (mm)	Stainless steel tape / 0.12	

Working with Korea Electric Research Institute (KERI)

Metal tape cassette Bobbin for coil HTS wire cassette Control box

Test in LN₂

Preparation of a prototype HTS-coil quadrupole

GHe cooling system at Changwon Univ.

Cryostat for cold GHe cooling on HTS coil

A prototype HTS quadrupole magnet is planned to be constructed and tested in 2016

Cryostat (40 K) for quadrupole singlet

Cold He gas refrigerator system 40 K at 5 bar

Building design for remote operation in target area

Layout of the ISOL system

Consideration on a new cyclotron for ISOL driver

IsoDAR

H2+

5 mA

2.3 Tm

1.99 m

1.16 T

450 ton

70 MeV, 1mA H- commercial cyclotron in Baseline Design

	BEST	IBA	Sumitomo*
Emax,	35~70MeV	30~70MeV	(Fixed) 70MeV
Imax	1mA*	750uA	1mA
B (H/V)	1.6T, 0.12T	1.7T, 0.12T	1.7T, 0.5T
Operating	INFN(Legnaro)	ARRONAX,	N/A
Site	(2015)	Zevacor, CDMN,	

1st Workshop on Compact Cyclotrons for High

Power Ion Beams (CC2015)

Date: June 26 (Fri.) and 29 (Mon.), 2015 Place: RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198

The 1st workshop on Compact Cyclotrons for High Power Heavy Ion Beams will be held at the RIKEN Nishina center for accelerator-based science (RNC) on June 26 and 29, 2015. The workshop is co-hosted by RNC and the institute of basic science (IBS) CC2015 is a by-invitation-only workshop for intensive discussions on feasibility study of compact cyclotrons for high power ion beams for applications ranging from RI beam production to neutrino science. CC2015 will cover the following topics:

- 1: M/Q=2 60 MeV/u cyclotron for ISOL production
- 2: Compact cyclotrons for neutrino science
- 3: Pre-accelerator cyclotrons for high energy uranium ion beams

Organizing committee Jong-Won Kim (IBS) Luciano Calabretta (INFN) Hiroki Okuno (RIKEN, Okuno@riken.jp)

Supported by Sumitomo Heavy Industries, 1td

Construction of ISOL test facility for TIS development

UCx Target development

The radioactive atoms are produced via the proton-induced fission.

	LaC ₂	UC ₂	
Density (g/cm ³)	5.20	11.28	
Melting Temp. (°C)	2360	2427	
Structure	HT β: FCC LT α: Tetragonal	HT β : FCC LT α : Tetragonal	
Cı	urrent stage	10 kW UC _x	

Afte	er annealing	of 35 mm¢ LaC ₂ disc
	Density	1.97 g/cm ³

Porosity	56 %
----------	------

RFQ cooler for beam cooling

Principle of RFQ cooler

An RFQ cooler developed at LPC-CAEN for SPIRAL2, June, 2015

Specification of RF cooler

Parameter	Value
Beam energy	10-60 keV
Beam current	10 ⁸ pps
Transverse emittance (injected beam)	30-40 π mm mrad
Emittance reduction factor	10
Energy spread	< 5 eV
Cooling time	1-10 ms
Transmission efficiency	> 80% CW beam, >50% bunched beam
Buffer gas	Helium
RF Voltage	500 Vpp (max)
RF frequency	1 MHz (max)

Design Parameters for EBIS

E-beam collector

Design review at BNL: A. Pikin, E. Beebe, J. Alessi (Jan. 2015)

Contribution on control code for off-line test: ANL (July, 2015)

Design parameters @ RISP

Electron beam current	Electron beam current density	Electron beam energy	B-field in Trap region
0 ~ 3 A	500 A/cm ²	~ 20 keV	6 T
A/q	Ion beam intensity	Breeding time	Breeding efficiency
2 ~ 7	$\sim 10^{8}$	50 ~ 100 ms	15 %
Repetition rate	Pulse width	Ion Trap Length	Electron Beam Dia.
> 10 Hz	10 ~ 20 µs	~ 0.7 m	0.9 mm

Calculation of charge breeding (CBSIM)

Electron Beam Energy : 20 KeV E-Beam Current : 3 A E-beam Current Density : 493.5 A/cm²

Isotopes of interest	Emittance	
	with rfq	without rfq
	cooler	cooler
¹³² Sn, ¹⁴² Xe, ⁹⁵ Sr, ¹⁵ O, ¹²⁶ Al	3 π mm mrad	30 π mm mrad

 $Sn^{1+} \rightarrow$

Electron gun test

E-gun test (with a cathode of ϕ 4.2 mm on Oct. 15, test with ϕ 5.6 mm underway)

Radiation dose calculations using MCNPX

Dose map of prompt radiation with 70 kW beam

Concluding remarks

- In-flight separator and ISOL systems are being designed along with building design, and prototyping is underway for major components.
- Components in the high radiation area require design consideration for maintenance and remote handling.
- We put our efforts more on the ISOL system to meet the RISP schedule

A thought

