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Event shape: Thrust
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Some Recent a,(mz) Results

e*e” event shapes

Discrepancy from Lattice
result.

Need independent test!
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o 1-jettiness in 3 ways in DIS
¢ Factorization theorems
¢ Preliminary N3LL results

¢ Sensitivity to a;, PDFs
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Event shape: 1-jettiness

¢ N-jettiness TN = QQme{qB Dis QL Dis- > qN * Pi}
¢ Generalization of thrust Stewart, Tackmann, Waalewijn

¢ N-jetlimit: 7y — 0

¢ 1-jettiness: 1jet +11ISR T = oz Z min{qp - pi,qs - pi}
© (g, q,are axes to project particle mom. 1€ X
¢ Considering 3 ways to define g,
¢ min. groups particles into 2 regions

Why 1-jettiness?

DIS thrusts (measured): Non-Global Log beyond NLL |
Dasgupta, Salam

Recent progress to resum NGL
Neill, Larkoski, Moult

1-jettiness: No NGL, N"LL (n>1) accessible

derive factorization thm. by using SCET

accuracy systematically improved with higher order ME’s



1-jettiness in 3 ways

CM frame

Breit frame
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Factorization theorems
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Beam, Jet, Soft functions
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NNLL prediction
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DK, Lee, Stewart 2013
¢ One order higher than

DIS thrust resummation (NLL)

¢ Higher precision?

d&zexp[ kf:l ’“+§::1 +a3§(asL)k+---] —|—NS(Oé3)

singular part: LL, NLL, NNLL, N53LL,... nonsingular part:
9

O(a,), O(a?),...



Nonsingular part at O(a) |

P
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is done analytically. DK, Lee, Stewart 2014

¢ @ requires jet algorithm and is done numerically.
Kang, Liu, Mantry 1312.0301

¢ H1 and ZEUS experiments measured Jet region

He Hy
pPJ
¢ difficult to measure the beam region Wi e wiu
PB
can be obtained from measuring jet region alone
requires measuring two regions.
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Log vs Non-Logs in DIS

(singular versus nonsingular)
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Log vs Non-Logs in DIS
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Log vs Non-Logs in DIS

(singular versus nonsingular)
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Log vs Non-Logs in DIS

(singular versus nonsingular)
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Log vs Non-Logs in DIS

(singular versus nonsingular)
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Log vs Non-Logs in DIS

(singular versus nonsingular)
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Log vs Non-Logs in DIS

(singular versus nonsingular)
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Log vs Non-Logs in DIS

(singular versus nonsingular)
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Log vs Non-Logs in DIS

(singular versus nonsingular)
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Log vs Non-Logs in DIS

singular versus nonsingular
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Log vs Non-Logs in DIS

(singular versus nonsingular)
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Log vs Non-Logs in DIS

(singular versus nonsingular)
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Log vs Non-Logs in DIS

(singular versus nonsingular)
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Log vs Non-Logs in DIS

(singular versus nonsingular)
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Log vs Non-Logs in DIS

(singular versus nonsingular)
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Log vs Non-Logs in DIS

(singular versus nonsingular)
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Log vs Non-Logs in DIS

(singular versus nonsingular)
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Log vs Non-Logs: Summary
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SCET works better for smaller x region at O(ay)!



Toward N>3LL

Dlas]|vlas] | Blas] [{H, J, B, S}|as]
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L B function up to 2 loops ~ ©aun staninoten,
Pade approx. Tackmann 1401.5478
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Soft function at 2 loop

¢ Wilson lines are different.

t@: (0| |VIV,| o(-- )T ViV,
ep: (O |vi¥,| 6T [¥iv,
pp: (0|T :ngn" 5(--)T fY’fo,f

¢ Well known at O(a,) :

virtual is scaleless and zero.
no loop in the real.

¢ at O(a/?):
virtual are scaleless and zero.
2 gluon cut has no loop.
1 gluon cut needs to be checked.

Nontrivial only for triple gluon vertex
Same for e*e, ep, pp!

0)
0)
0)

incoming and outgoing lines give different
sign in the Eikonal propagator
1

n -k =+ e

The sign could matter in the loop integral.
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Perturbative o sene ows0cey
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Perturbative o
Convergence

---------- NLL Q=50 GeV |

smaller x
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Perturbative
Convergence

smaller x
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Perturbative
Convergence

larger x
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Perturbative
Convergence

larger x

5(daldty) [%]
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Perturbative
Convergence
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Perturbative
Convergence

smaller Q
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Perturbative
Convergence

larger Q
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Perturbative Convergence: Summary

T percent
uncertainty

200 T T 1 T T T
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100F event shapes 8%
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Sensitivity to o, and PDFs

as(my) versus Perturbative & PDF Uncertainty
PDF at 90% conf.

o variation includes PDF
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Sensitivity to o, and PDFs

as(my) versus Perturbative & PDF Uncertainty
PDF at 90% conf.

larger x
& o variation includes dPDF
W oa.=1% | Sa.=3% - N3LL —— OPDF
\ x=0.1 Q=50 GeV
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Sensitivity to a, and PDFs

as(my) versus Perturbative & PDF Uncertainty
PDF at 90% conf.

larger x
& o variation includes dPDF
W sa.=1% 6a,=3% —— N3LL —— OPDF
N, x=0.2 Q=50 GeV
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Sensitivity to a, and PDFs

as(my) versus Perturbative & PDF Uncertainty
PDF at 90% conf.

reset
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Sensitivity to o, and PDFs

as(my) versus Perturbative & PDF Uncertainty
PDF at 90% conf.

smaller x
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Sensitivity to o, and PDFs

as(my) versus Perturbative & PDF Uncertainty
PDF at 90% conf.

smaller x o
o variation includes dPDF
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Sensitivity to a, and PDFs

as(my) versus Perturbative & PDF Uncertainty
PDF at 90% conf.
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Sensitivity to a, and PDFs

as(my) versus Perturbative & PDF Uncertainty
PDF at 90% conf.

smaller
Q o variation includes dPDF
W oa.=1% | Sa.=3% - N3LL —— OPDF
\ x=0.05 Q=30 GeV
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Sensitivity to a, and PDFs

as(my) versus Perturbative & PDF Uncertainty
PDF at 90% conf.

smaller
Q o variation includes dPDF
W oa=1% | 6a.=3% - NLL —— &PDF
T.x=0.05 Q=15GeV
< 5 o
5
2
<O
o
1 O]

0.00 005 010 015 020 025 0.30
&
52



Sensitivity to a, and PDFs

as(my) versus Perturbative & PDF Uncertainty
PDF at 90% conf.

reset
o variation includes dPDF
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Sensitivity to a, and PDFs

as(my) versus Perturbative & PDF Uncertainty
PDF at 90% conf.

larger
& Q o variation includes dPDF
W oa.=1% | Sa.=3% - N3LL —— OPDF
\ x=0.05 Q=80 GeV
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Sensitivity to o, and PDFs

as(my) versus Perturbative & PDF Uncertainty
PDF at 90% conf.

larger
& Q o variation includes dPDF
W o.=1% | Sa.=3% - N3LL —— OPDF
\ x=0.05 Q=100 GeV
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Summary

¢ Factorization thms for 1-jettiness

g r~ X B X J X S e
¢ N3LL predictions for E

¢ Progress toward N3LL+O(a) predictions for

¢ Accuracy 6a.= 2% or better at x=0.2~0.5

better than 6a, = 4% theory uncertainty in H1 analysis

comparable to MSTW PDF uncertainty

¢ Need O(a.?) nonsingular
56
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Nonsingular part at O(a) '

DK, Lee, Stewart 2014

-
.
s
-
-
-
-
-
-
-
-
-
-
-
»
-

|
1

Hp Hy
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Nonsingular part of F1

D) asCF

B, = Q5 [Nl(T x) + No(T, z) —I—/HT %fq )Rq(T z)

F ) e+ m)agn) +or -1 [ L () alo)

T

M) = —45 [+ /21, + 1) — fy(@)

2w 1

enhanced at small x

1—2z)(1—4 1+22 1—
singular term / A‘{(x):( z)( z) +z T

1
2(1 —x) i 1—x 4 % ) 58
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Nonpertubative Effect

¢ Estimating nonperturbative part of soft function

o Form > AQCD/Q
OPE gives power correction with O(Agep/7Q) suppression

%]dgpert (7-) ~ (7’ — QQ/Q)

J(T) — Opert (T) ] Q dr ~ Opert

¢ )~ Agcp : nonpertubative matrix element

¢ For 7> Agep/@ 19
significant nonpertubative effect 0.5
convolving shape function
consistent with power correction

0.0

Ja(K)

—-0.5}

o(t) = /dkdpert(T —k/Q) F(k) -1.0p

e (I TI0) Y AT

Ligeti, Tackmann, Stewart




Sensitivity to as(mz), 1, and PDF's

Degeneracy between a,(myz) and €27 broken by @
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Sensitivity to as(mz), 1, and PDF's

Degeneracy between a,(myz) and €27 broken by @

W sa.=1% | ba.=3%  50,210%,20%
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Sensitivity to as(mz), 1, and PDF's

Degeneracy between a,(myz) and €27 broken by @

W sa.=1% | 6a.=3%  —— 60,=10%,20%
I
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Sensitivity to as(mz), 1, and PDF's

Degeneracy between a,(myz) and €27 broken by @
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Sensitivity to as(mz), 1, and PDFs

Degeneracy between a,(myz) and €27 broken by @

not by x
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Sensitivity to as(mz), 1, and PDF's

Degeneracy between a,(myz) and €27 broken by @

not by x
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Sensitivity to as(mz), 1, and PDF's

Degeneracy between a,(myz) and €27 broken by @

not by x
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Sensitivity to as(mz), 1, and PDF's

Degeneracy between a,(myz) and €27 broken by @

not by x
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Sensitivity to as(mz), 1, and PDF's

Degeneracy between a,(myz) and €27 broken by @

not by x
W sa.=1% | 6a.=3%  —— 60,=10%,20%
of 1 - x=0.2 Q=50 GeV
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Choice of scales

o FOFAQCD LT K1
pg =Q ppg=+V1Q
ps = 7Q

¢ For TNAQCD/Q

significant nonperturbative effect
soft scale freezing at ;g ~ Agep

uB.g~ v/ Agcp®

¢ For 7 ~ 1
no hierarchy in scales
no large logs

100

M(T)
up=Q/x(t—-1+y) _7 /’LH ~ /’LB,J ~ /’LS ~ Q
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Resummation and RGE

y : conjugate variable of 74

Fourier transformation

~

do iy do ¥ o
— = /dﬁe Y . = H(u) By(y,w, 1) Jq(y, ) S(y, )

©

oo

lnd—(}—LZ (asL —I—Zas —I—OéSZ(OéSL)k—I—“-
|_'_l |_'_l |_'_l L = log(iy)

NLL NNLL
¢ Resummmg large logs pn
¢ No large logs in each function -
at its natural scale U;
, iV S & it Y
¢ RG evolution Bt 54t 4 .
from M; to common scale 1 f“ e
— M 70
KA




missing particles in forward region

n = —In(tanf/2)
Proton remnants and particles moving very forward region

out of detector coverage: 0 < 0 < Ot » 1 > Necut
¢ H1: Ocu =4°(0.7°) and Neut = 3.4(5.1) for main cal. (PLUG cal.)

o ZEUS: Ocut = 2.2° and Neut = 4.0 for FCAL

Elab 9
w22 g

An =1
g nECM 157

Boost to CM frame: UCM =1n— An

CM __ ‘ —npSM
¢ HI1: mutCh; 1'6(3'3) e 0'2(0°04)| \Suppression factor!
o ZEUS: T]Cllt — 22; |€ nCUt — O J /

QQB * Pmiss mrT _77

Maximum missing measurement: Tmiss = 02 05"

max lab _:
« mp = L7 sin 0cut

about 64(11) GeV for H1 and 32 GeV for ZEUS

QB =Vy/2Q, xQ
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¢ P; dependent observable for TMDPDF

¢ Toward multi-jet events in DIS

¢ Jet substructure: heavy meson, quarkonium in a jet
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