

Toward Precision Jet Study with a DIS Event Shape

Daekyoung Kang (LANL)

In collaboration with

Iain Stewart (MIT), **Chris Lee** (LANL), **Ou Labun**(Arizona)

1303.6952: factorization & NNLL resummation
1407.6707: analytic 1-loop nonsingular
1504.04006: 2-loop soft functions
Work in progress for N³LL

**XLVI International Symposium on
Multiparticle Dynamics (ISMD2016)**

Event shape: Thrust

$$\tau_{ee} = 1 - \frac{1}{Q} \max_{\vec{n}} \sum_i |\vec{p}_i \cdot \vec{n}| \quad \text{Farhi}$$

- Up to $O(\alpha_s^3) + \text{N}^3\text{LL}$ Becher and Schwartz
Abbate, Fickinger, Hoang,
Mateu, Stewart

$$\alpha_s(m_Z) = 0.1135 \pm 0.0011$$

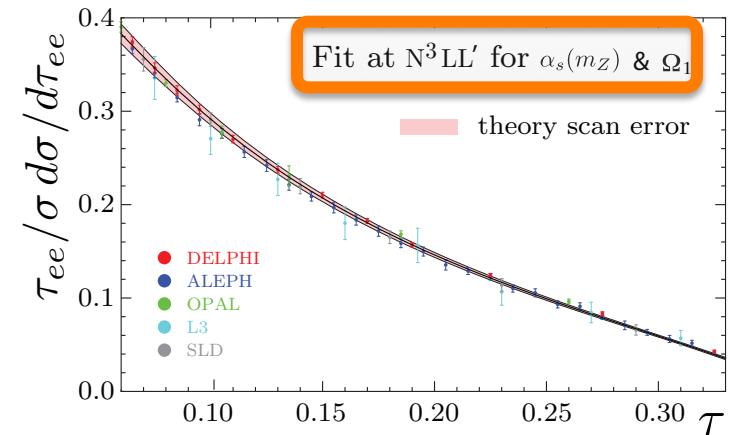
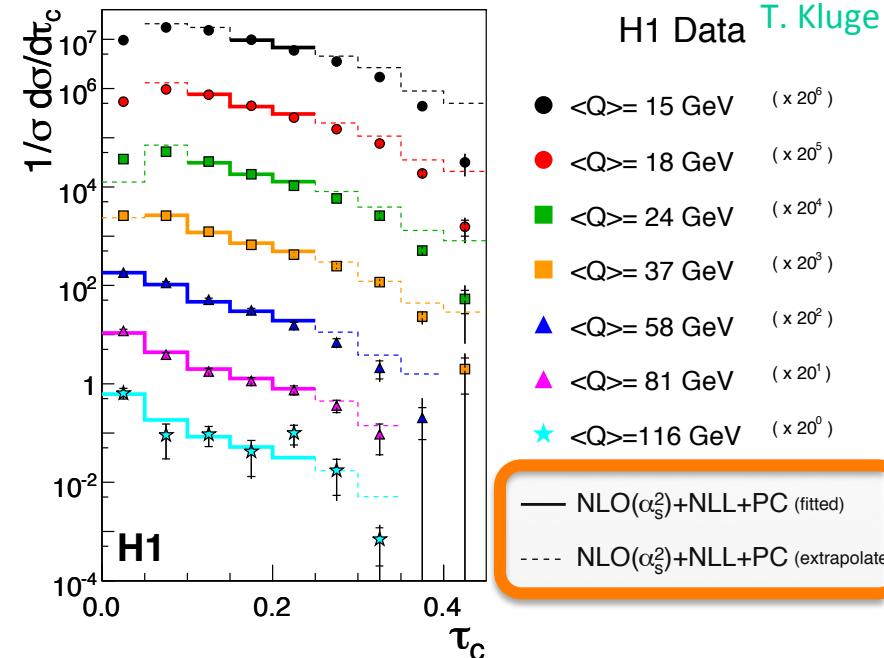
$$\tau_{\text{DIS}} = 1 - \frac{1}{E_J} \sum_{i \in \mathcal{H}_J} |\vec{p}_i \cdot \vec{n}|$$

- one hemisphere
- Up to $O(\alpha_s^2) + \text{NLL}$ Antonelli, Dasgupta, Salam

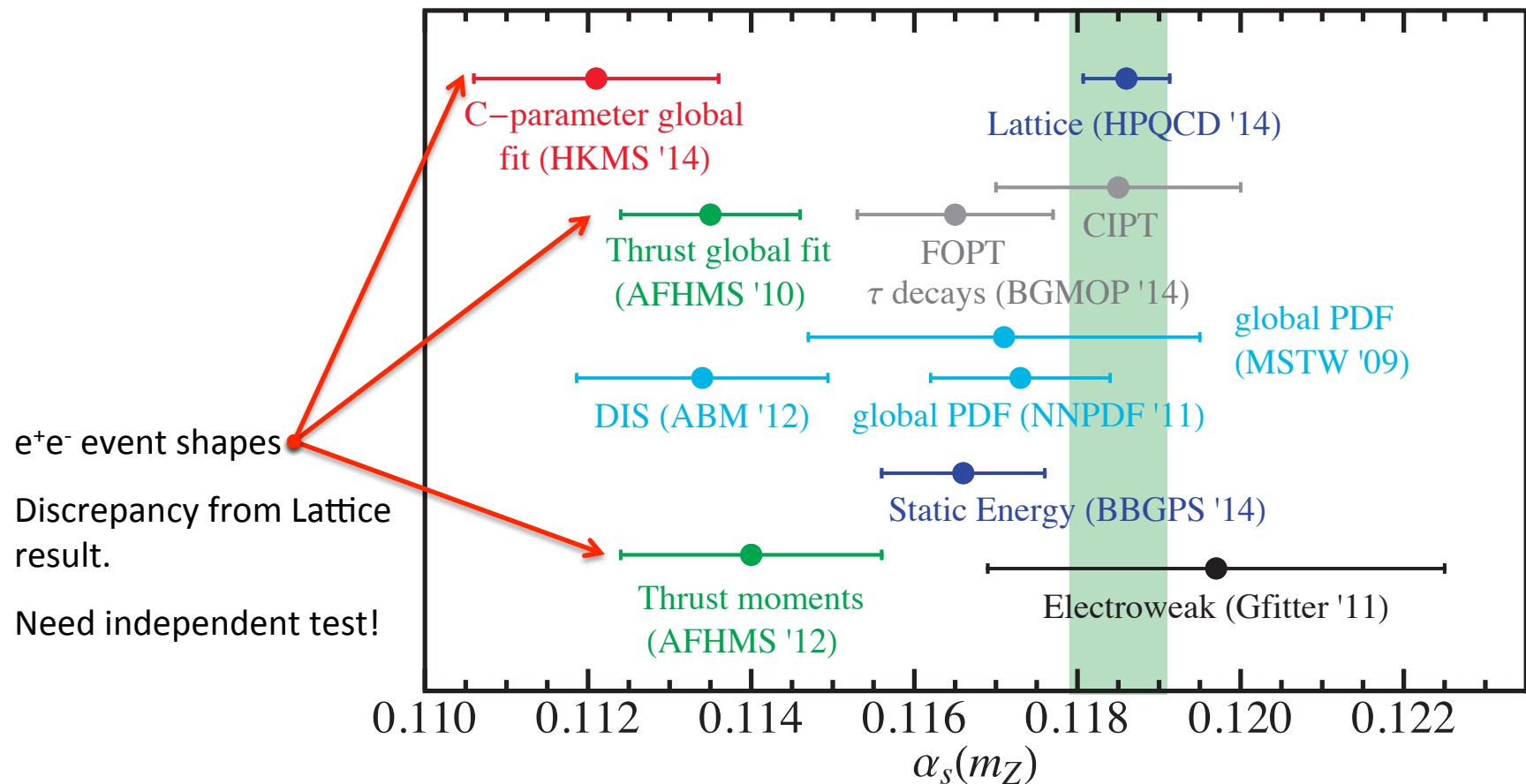
$$\alpha_s(m_Z) = 0.1198 \pm 0.0013(\text{exp.})$$

$$+0.0056 \quad (\text{th.})$$

- Higher precision in DIS? NNLL or higher ?

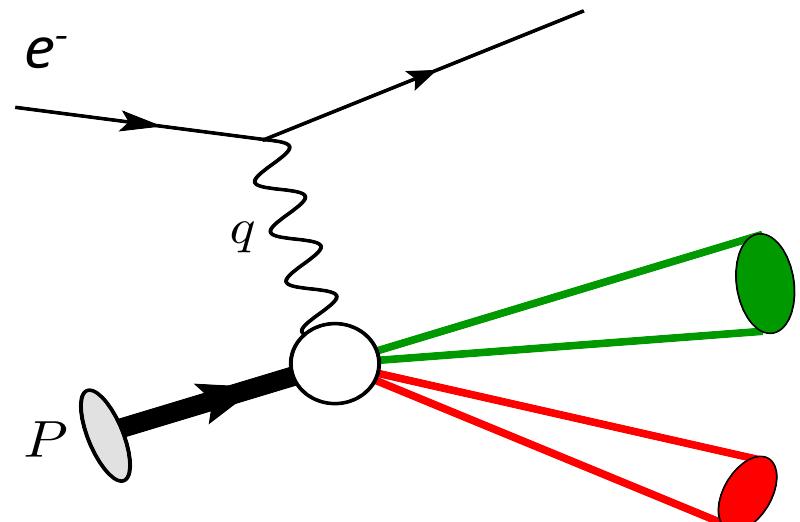
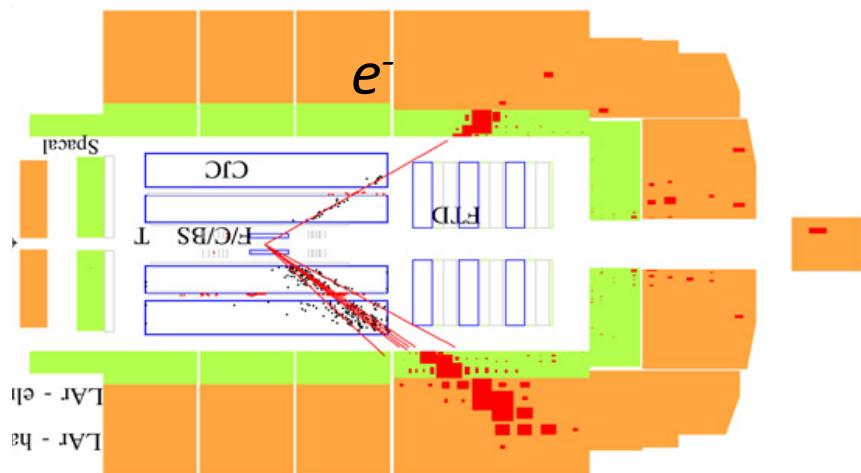


Some Recent $\alpha_s(m_Z)$ Results



Outline

- **1-jettiness in 3 ways in DIS**
- Factorization theorems
- Preliminary N^3LL results
- Sensitivity to α_s , PDFs



H1 Event from www-h1.desy.de

Event shape: 1-jettiness

- **N-jettiness**

- Generalization of thrust
- N-jet limit: $\tau_N \rightarrow 0$

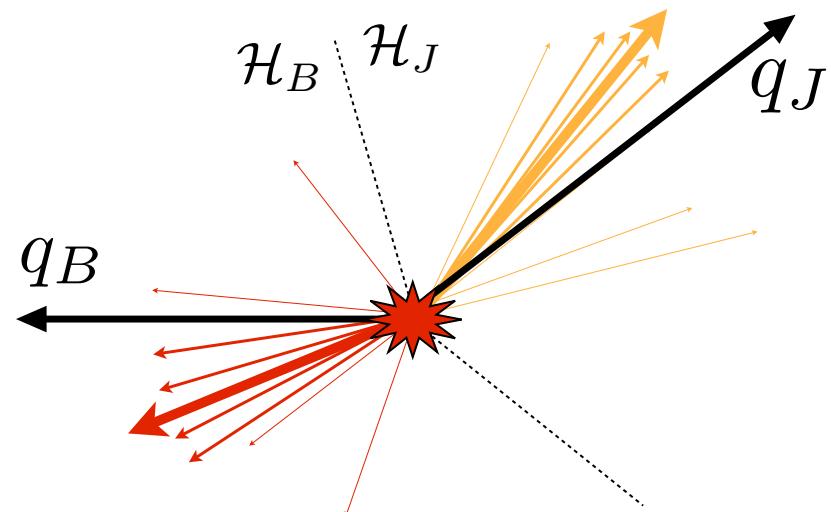
$$\tau_N = \frac{2}{Q^2} \sum_i \min\{q_B \cdot p_i, q_1 \cdot p_i, \dots, q_N \cdot p_i\}$$

Stewart, Tackmann, Waalewijn

- **1-jettiness: 1 jet + 1 ISR**

- q_B, q_J are axes to project particle mom.
- Considering 3 ways to define q_J
- min. groups particles into 2 regions

$$\tau_1 = \frac{2}{Q^2} \sum_{i \in X} \min\{q_B \cdot p_i, q_J \cdot p_i\}$$



Why 1-jettiness?

DIS thrusts (measured): Non-Global Log beyond NLL

Dasgupta, Salam

Recent progress to resum NGL

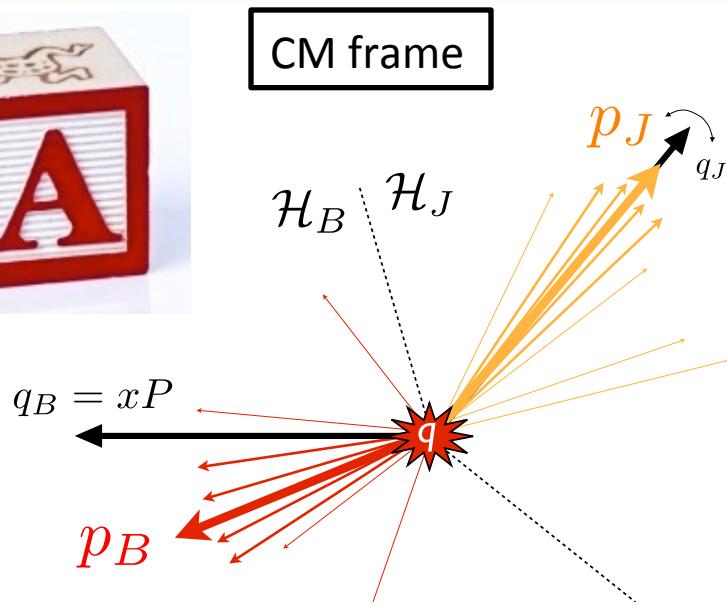
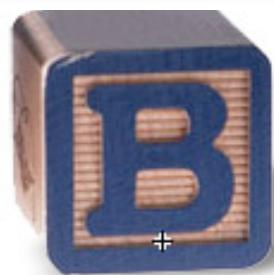
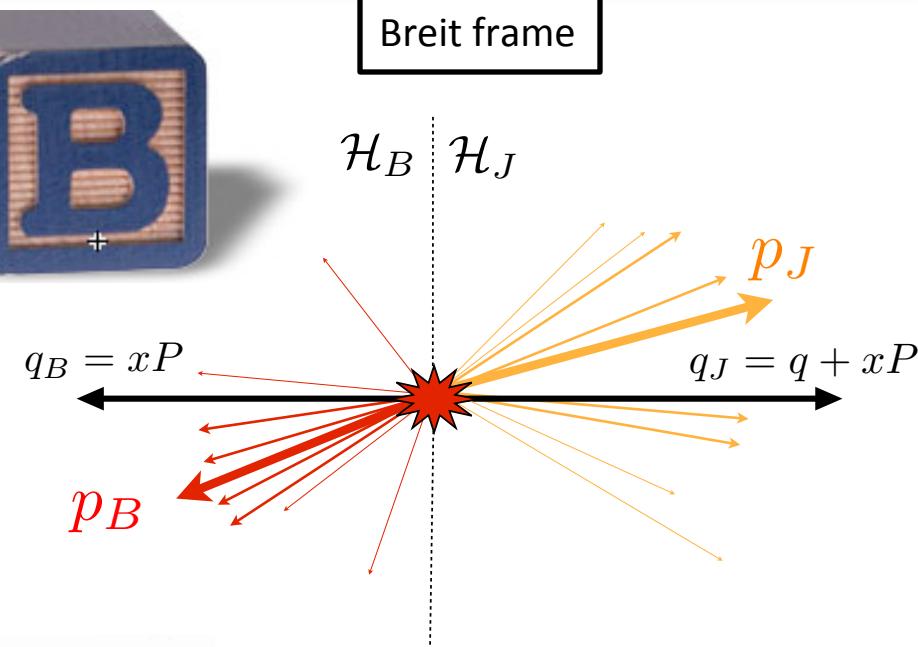
Neill, Larkoski, Moult

1-jettiness: No NGL, N^nLL (n>1) accessible

derive factorization thm. by using SCET

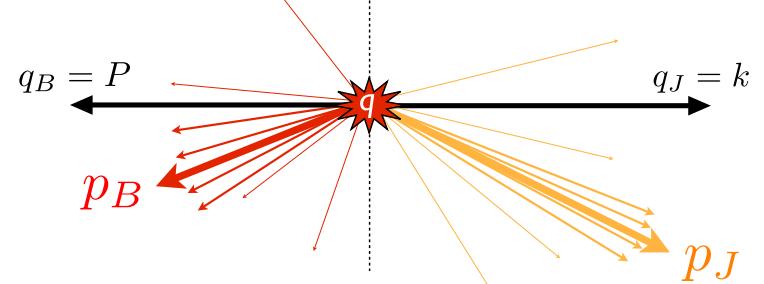
accuracy systematically improved with higher order ME's

1-jettiness in 3 ways



$$\tau_1 = \frac{2}{Q^2} \sum_{i \in X} \min\{q_B \cdot p_i, q_J \cdot p_i\}$$

CM frame

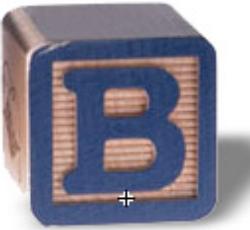


Kang, Mantry, Qiu PRD2012, 2013

same axes as but different weighting for Jet and Beam regions

Factorization theorems

$$\frac{1}{\sigma_0} \frac{d\sigma}{dx dQ^2 d\tau_1^a} = H_q(\mu) \int dt_B dt_J dk_s \delta \left(\tau_1^a - \frac{t_B}{Q^2} - \frac{t_J}{Q^2} - \frac{k_s}{Q} \right) \times B_q(t_B, x, \mu) J_q(t_J, \mu) S(k_s, \mu) + (q \leftrightarrow \bar{q})$$

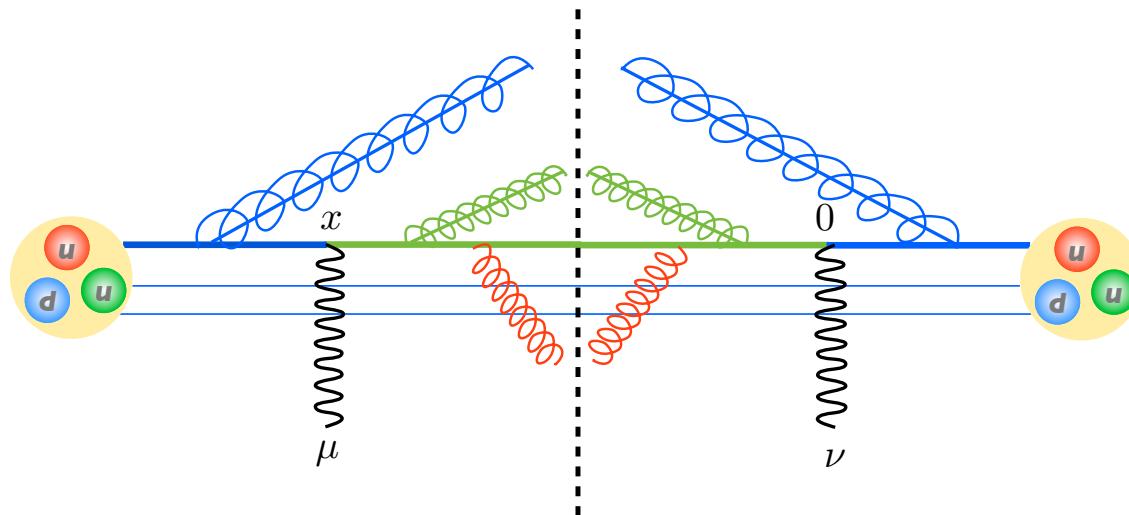
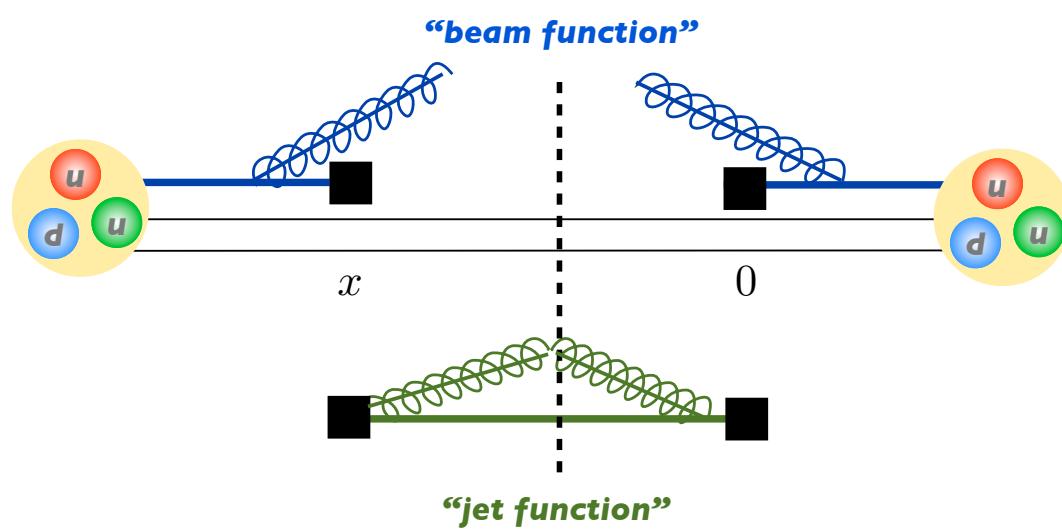
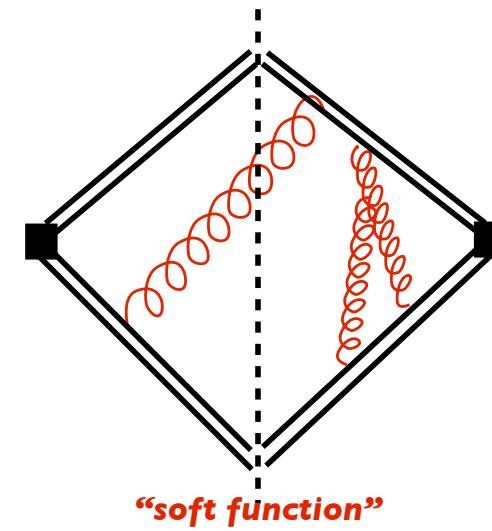


$$\frac{1}{\sigma_0} \frac{d\sigma}{dx dQ^2 d\tau_1^b} = H_q(\mu) \int dt_B dt_J dk_s \delta \left(\tau_1^b - \frac{t_B}{Q^2} - \frac{t_J}{Q^2} - \frac{k_s}{Q} \right) \times \int d^2 \vec{p}_\perp B_q(t_B, x, \vec{p}_\perp^2, \mu) J_q(t_J - \vec{p}_\perp^2, \mu) S(k_s, \mu) + (q \leftrightarrow \bar{q})$$

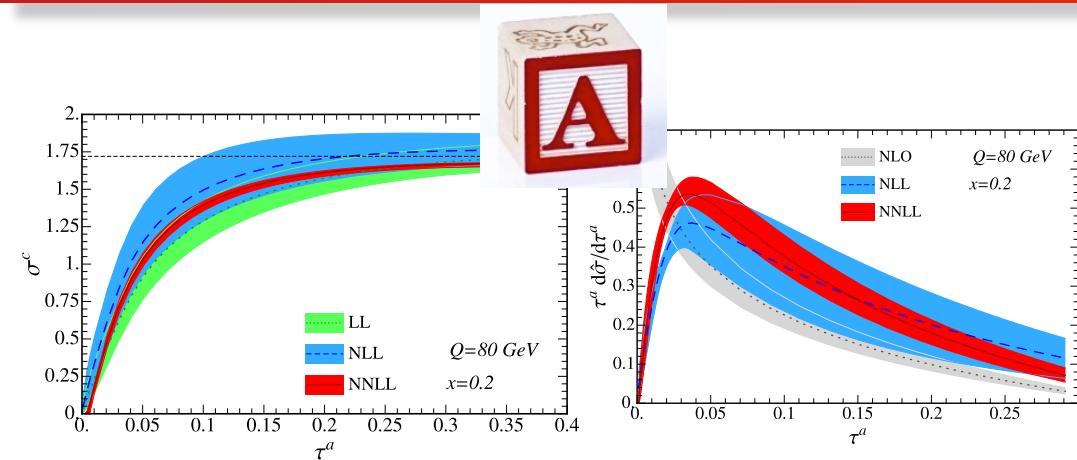
Transverse momentum dependent
Beam function

$$\frac{1}{\sigma_0} \frac{d\sigma}{dx dQ^2 d\tau_1^c} = H_q(\mu) \int dt_B dt_J dk_s \delta \left(\tau_1^c - \frac{t_B}{Q^2} - \frac{t_J}{xQ^2} - \frac{k_s}{\sqrt{x}Q} \right) \times \int d^2 \vec{p}_\perp B_q(t_B, x, \vec{p}_\perp^2, \mu) J_q(t_J - (\vec{q}_\perp + \vec{p}_\perp)^2, \mu) S(k_s, \mu) + (q \leftrightarrow \bar{q})$$

Beam, Jet, Soft functions



NNLL predictions



DK, Lee, Stewart 2013

- One order higher than DIS thrust resummation (NLL)
- Higher precision?

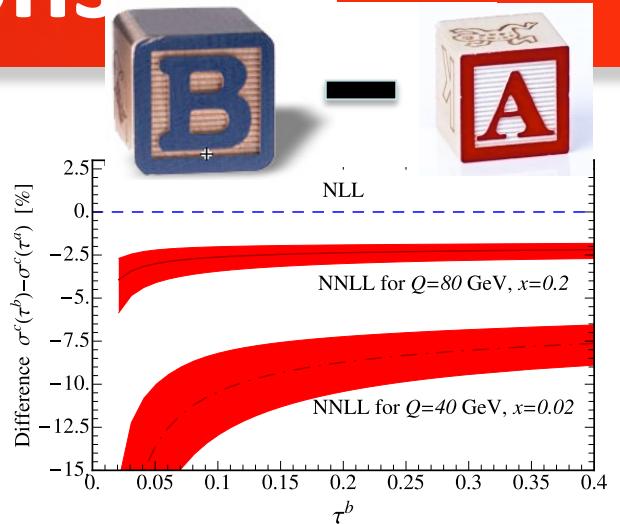
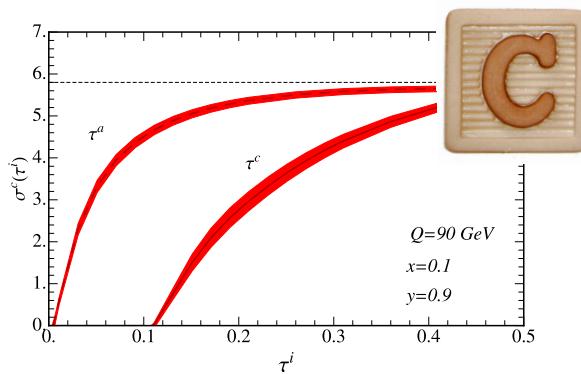
$$d\tilde{\sigma} = \exp \left[L \sum_{k=1}^{\infty} (\alpha_s L)^k + \sum_{k=1}^{\infty} (\alpha_s L)^k + \alpha_s \sum_{k=0}^{\infty} (\alpha_s L)^k + \dots \right] + \text{NS}(\alpha_s)$$

singular part: LL, NLL, NNLL, $\text{N}^3\text{LL}, \dots$

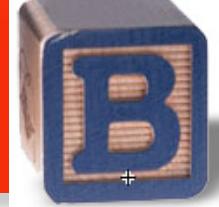
nonsingular part:

9

$$O(\alpha_s), O(\alpha_s^2), \dots$$



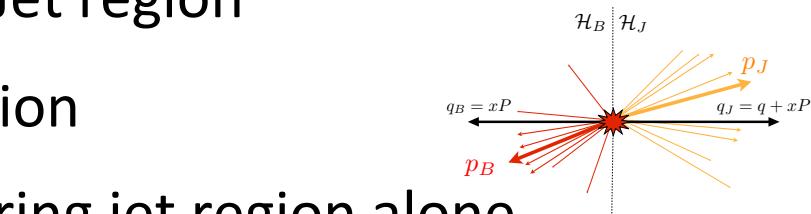
Nonsingular part at $O(\alpha_s)$



- is done analytically.
- requires jet algorithm and is done numerically.
DK, Lee, Stewart 2014
Kang, Liu, Mantry 1312.0301
- H1 and ZEUS experiments measured Jet region
 - difficult to measure the beam region
- can be obtained from measuring jet region alone,
while requires measuring two regions.

$$\begin{aligned}\tau_1^b &\stackrel{\text{Breit}}{=} \frac{1}{Q} \sum_{i \in X} \min\{n_z \cdot p_i, \bar{n}_z \cdot p_i\} \\ &= \frac{1}{Q} \left[\sum_{i \in \mathcal{H}_J^b} (E_i - p_{zi}) + \sum_{i \in \mathcal{H}_B^b} (E_i + p_{zi}) \right] \\ &= \frac{1}{Q} \left[\sum_{i \in X} (E_i + p_{zi}) - 2 \sum_{i \in \mathcal{H}_J^b} p_{zi} \right],\end{aligned}$$

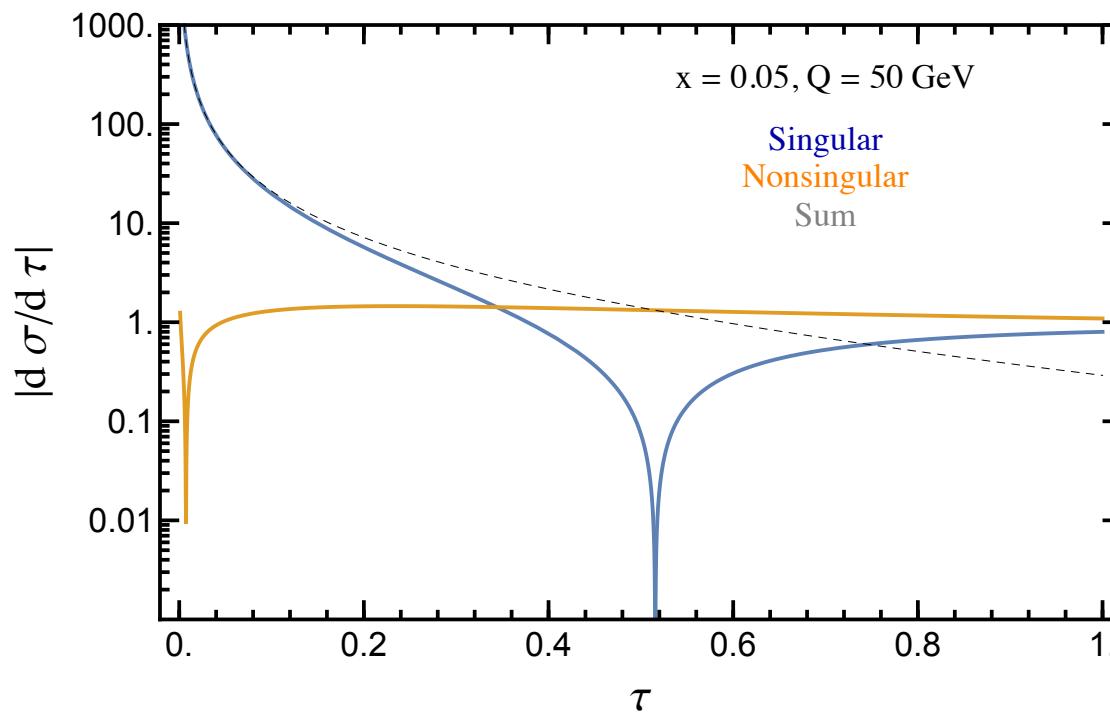
Antonelli, Dasgupta, Salam JHEP 2000

$$\tau_1^b \stackrel{\text{Breit}}{=} 1 - \frac{2}{Q} \sum_{i \in \mathcal{H}_J^b} p_{zi}$$


$$\begin{aligned}\tau_1^c &\stackrel{\text{CM}}{=} \frac{1}{xy\sqrt{s}} \sum_{i \in X} \min\{n_z \cdot p_i, \bar{n}_z \cdot p_i\} \\ &= \frac{1}{xy\sqrt{s}} \left[\sum_{i \in X} (E_i + p_{zi}) - 2 \sum_{i \in \mathcal{H}_J^c} p_{zi} \right] \\ \tau_1^c &\stackrel{\text{CM}}{=} \frac{1}{x} \left(1 - \frac{2}{y\sqrt{s}} \sum_{i \in \mathcal{H}_J^c} p_{zi} \right)\end{aligned}$$

Log vs Non-Logs in DIS

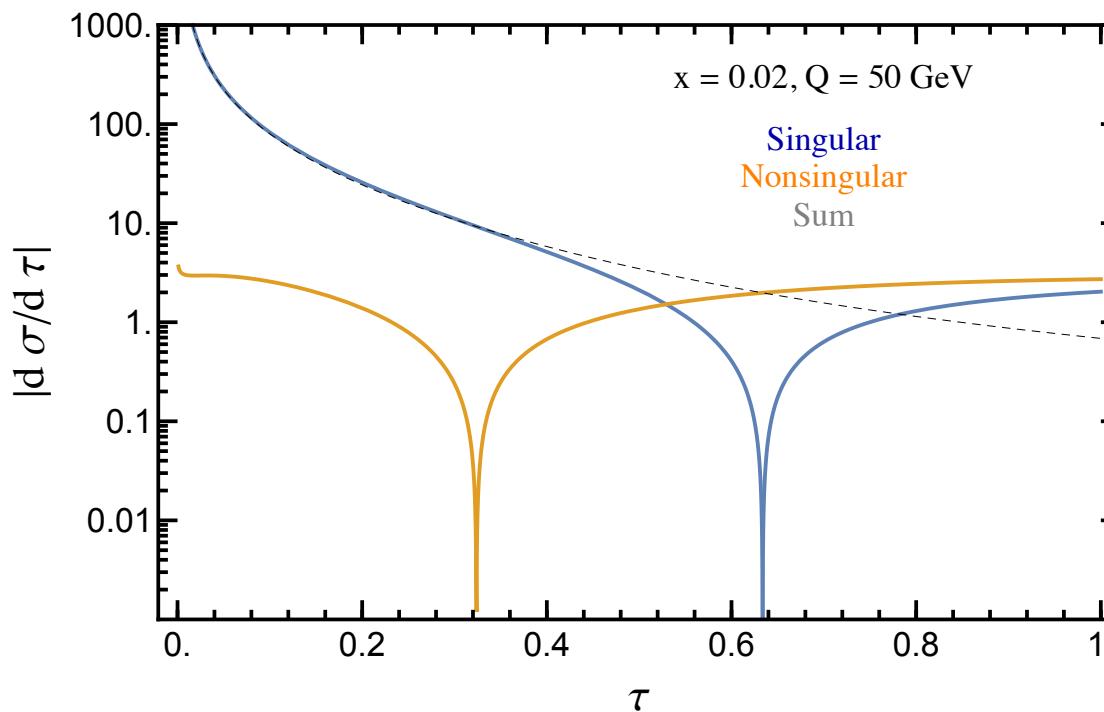
(singular versus nonsingular)



Log vs Non-Logs in DIS

(singular versus nonsingular)

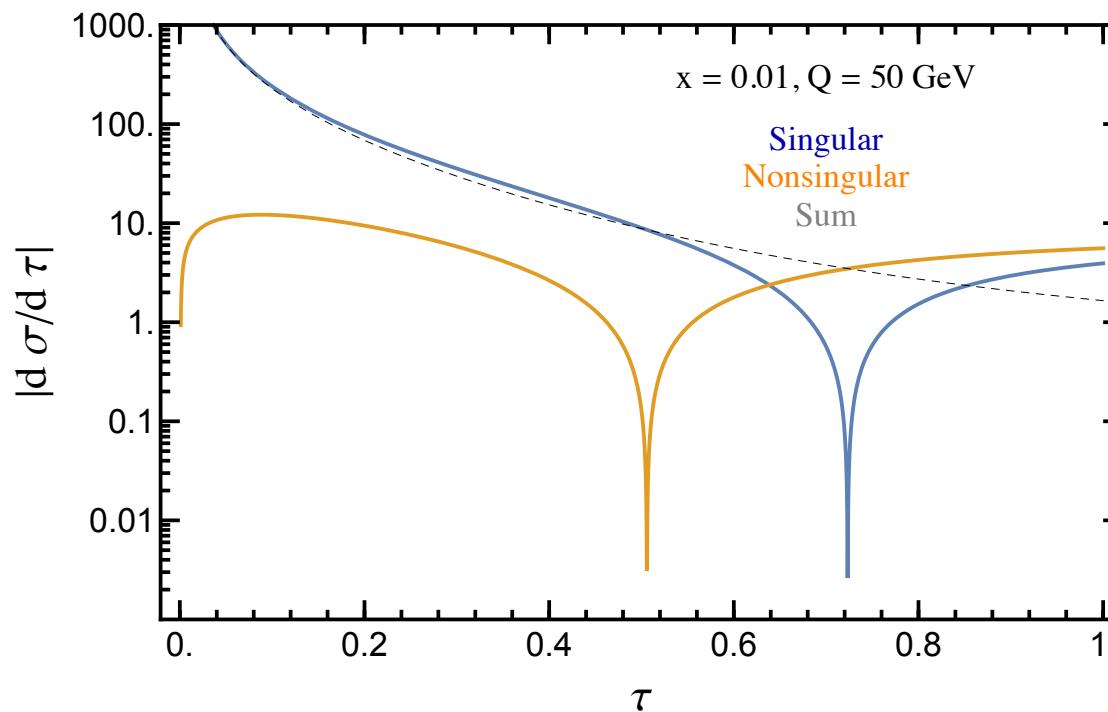
smaller x



Log vs Non-Logs in DIS

(singular versus nonsingular)

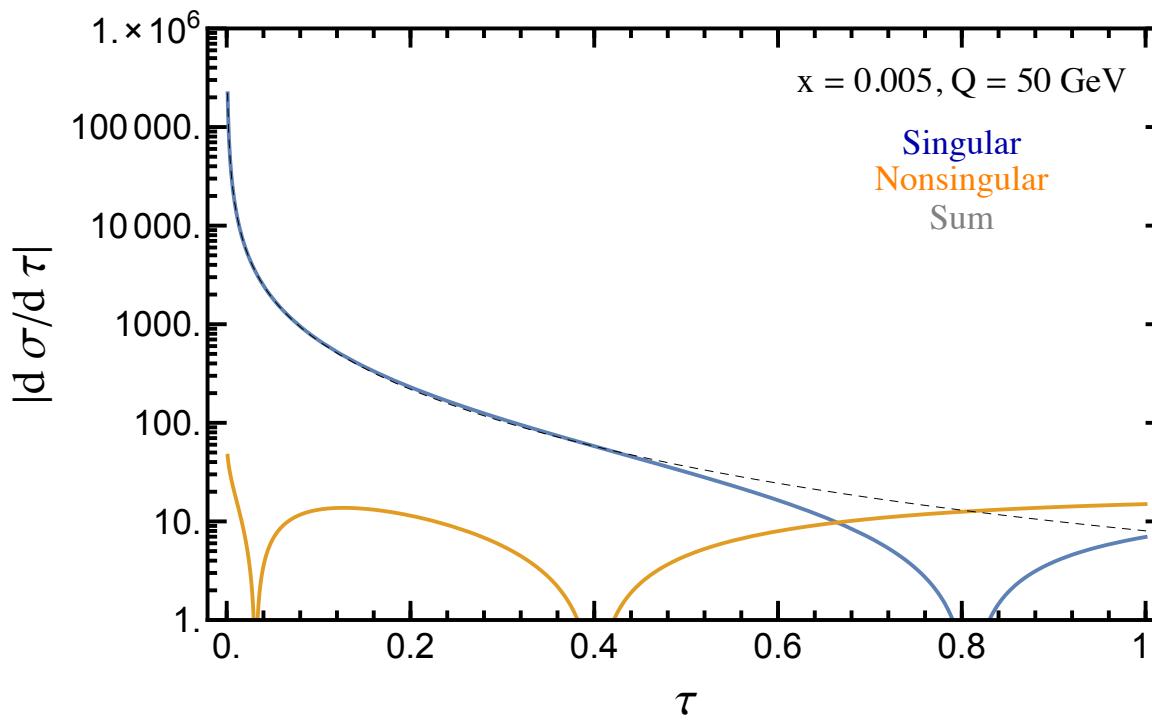
smaller x



Log vs Non-Logs in DIS

(singular versus nonsingular)

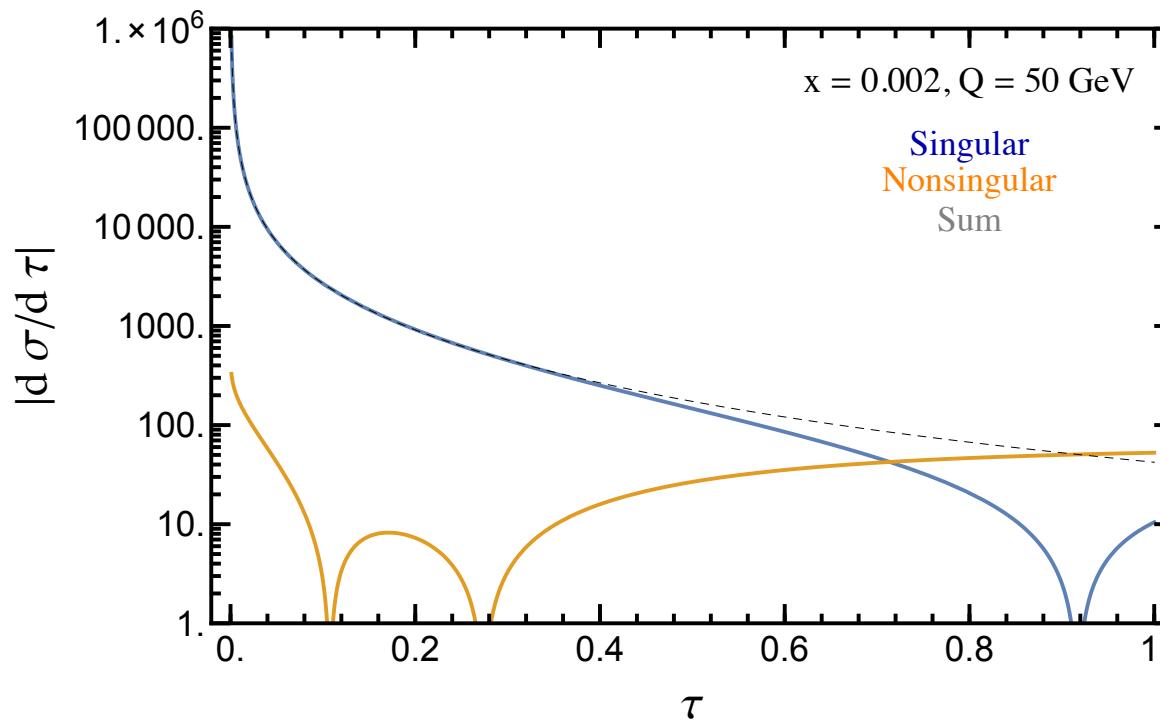
smaller x



Log vs Non-Logs in DIS

(singular versus nonsingular)

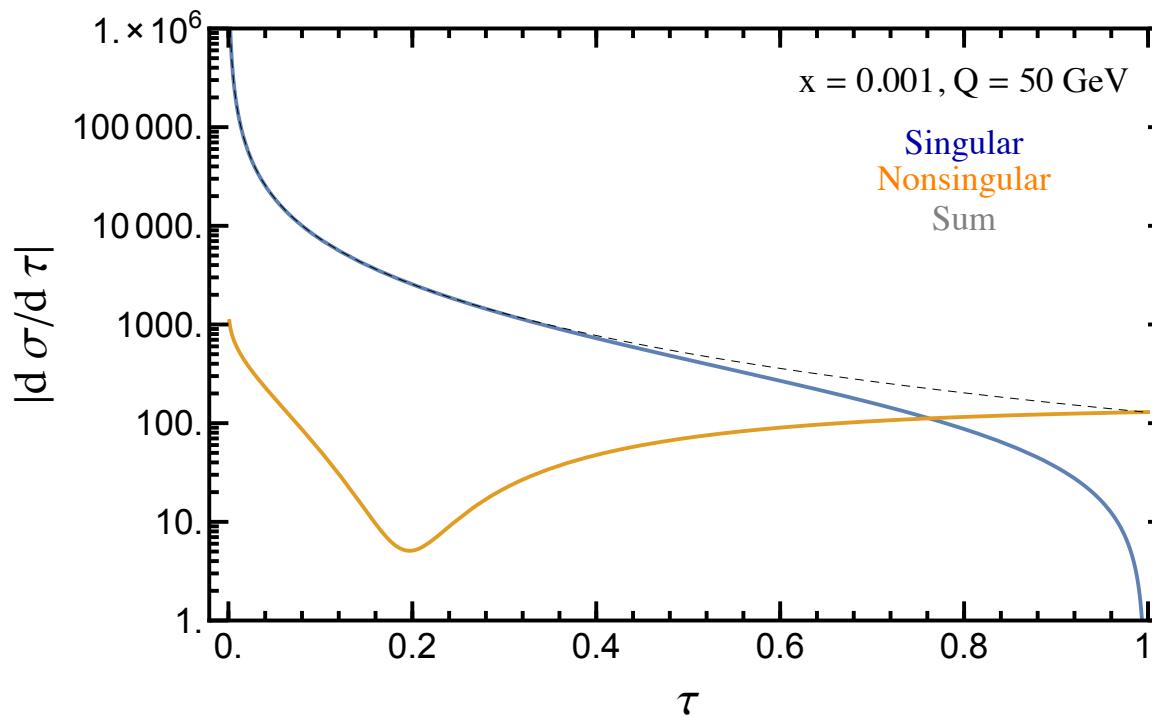
smaller x



Log vs Non-Logs in DIS

(singular versus nonsingular)

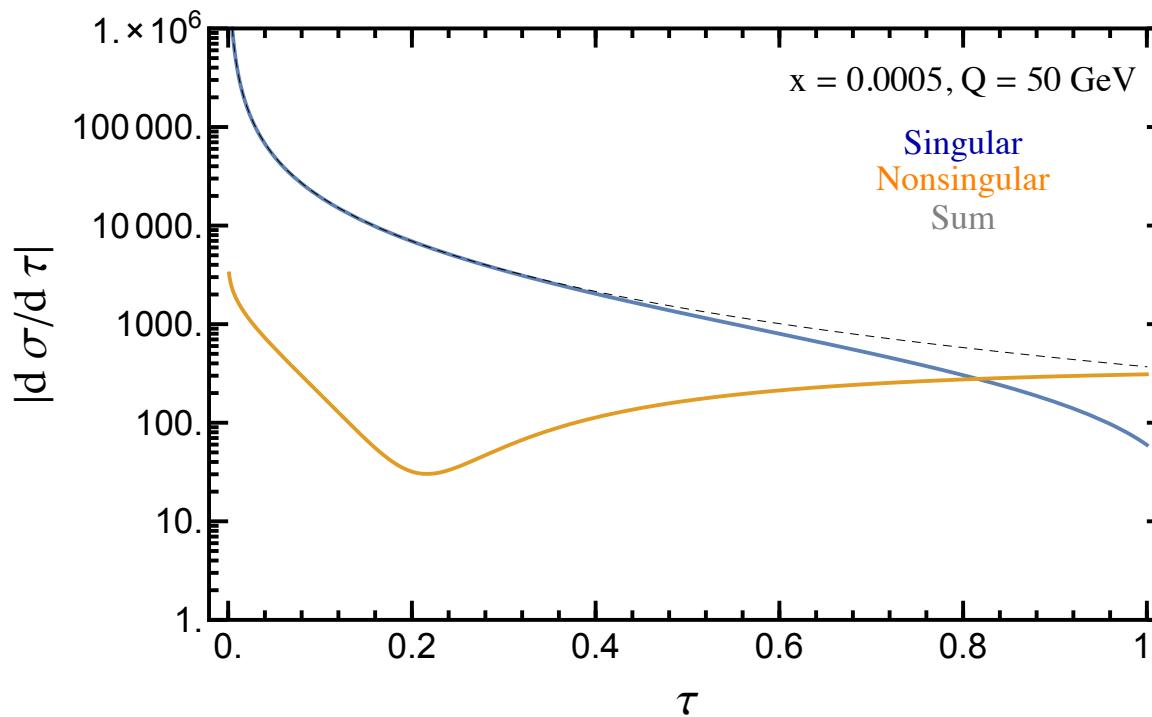
smaller x



Log vs Non-Logs in DIS

(singular versus nonsingular)

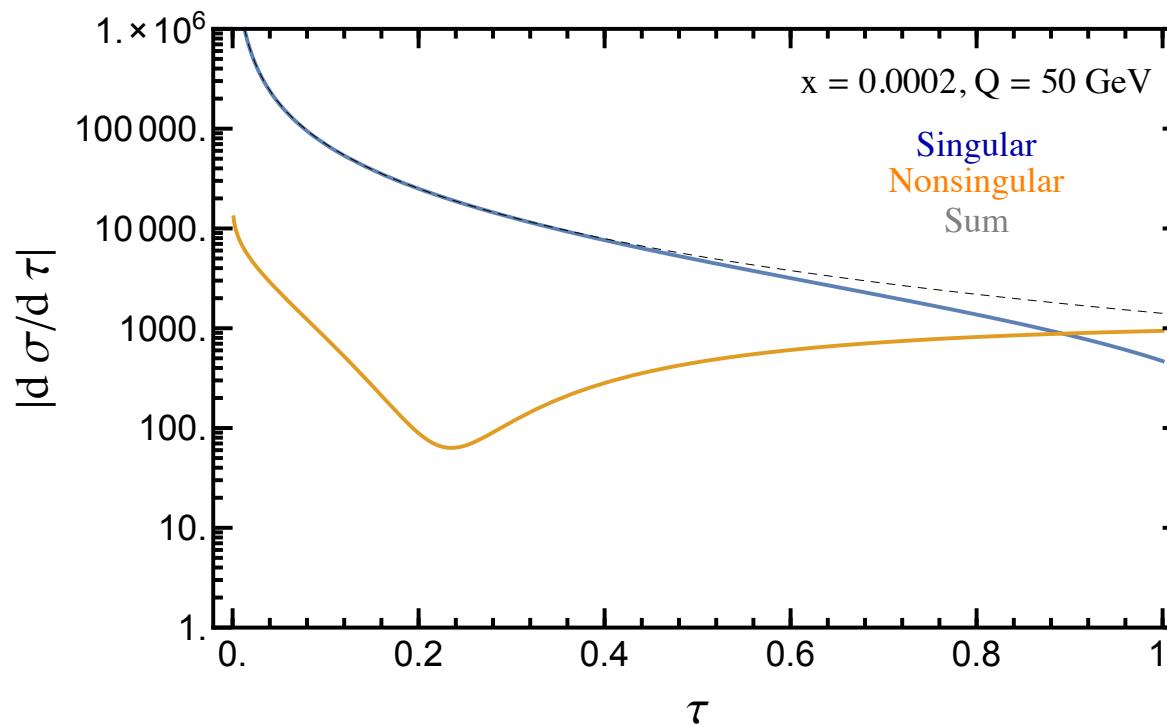
smaller x



Log vs Non-Logs in DIS

(singular versus nonsingular)

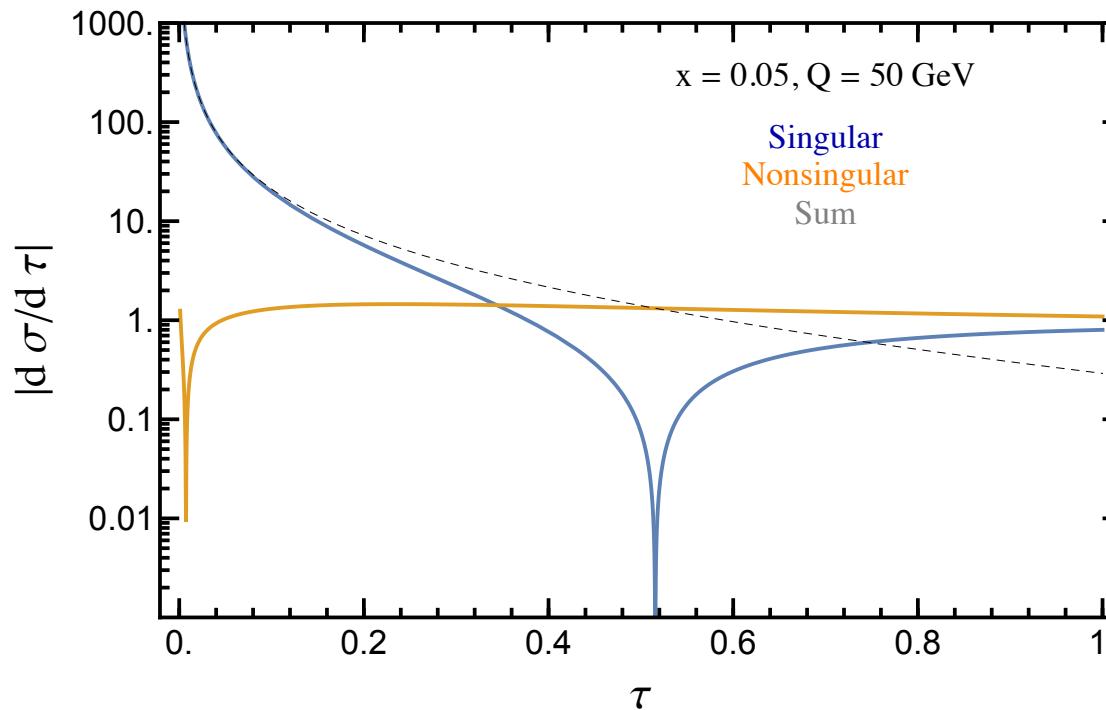
smaller x



Log vs Non-Logs in DIS

(singular versus nonsingular)

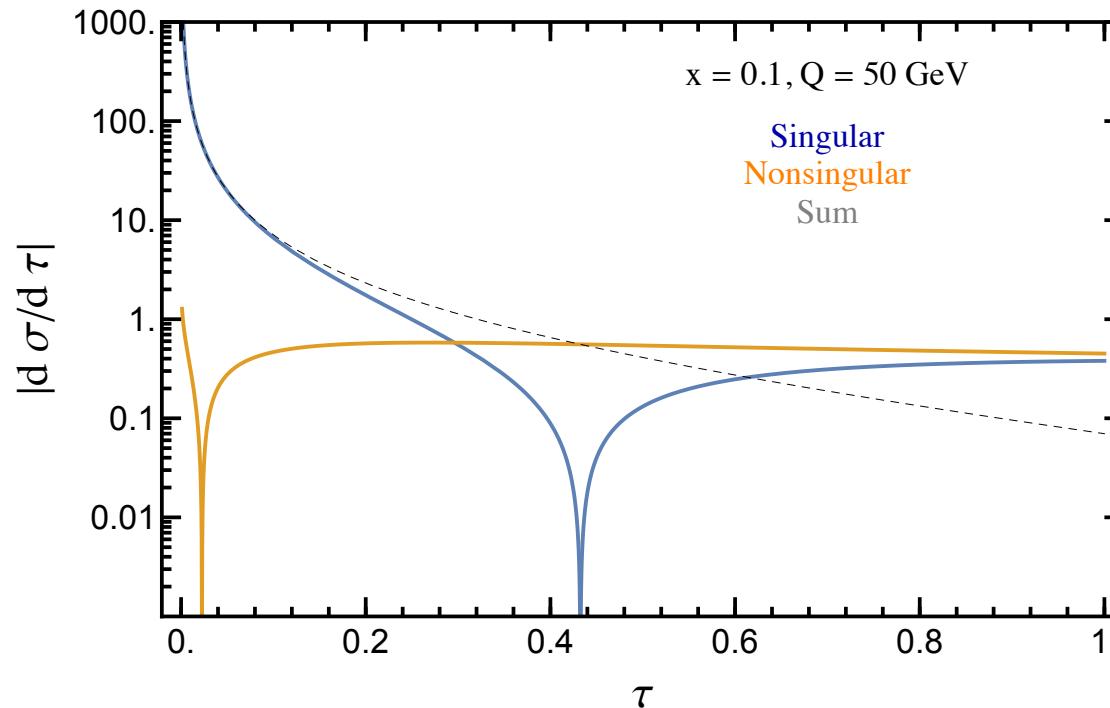
reset



Log vs Non-Logs in DIS

(singular versus nonsingular)

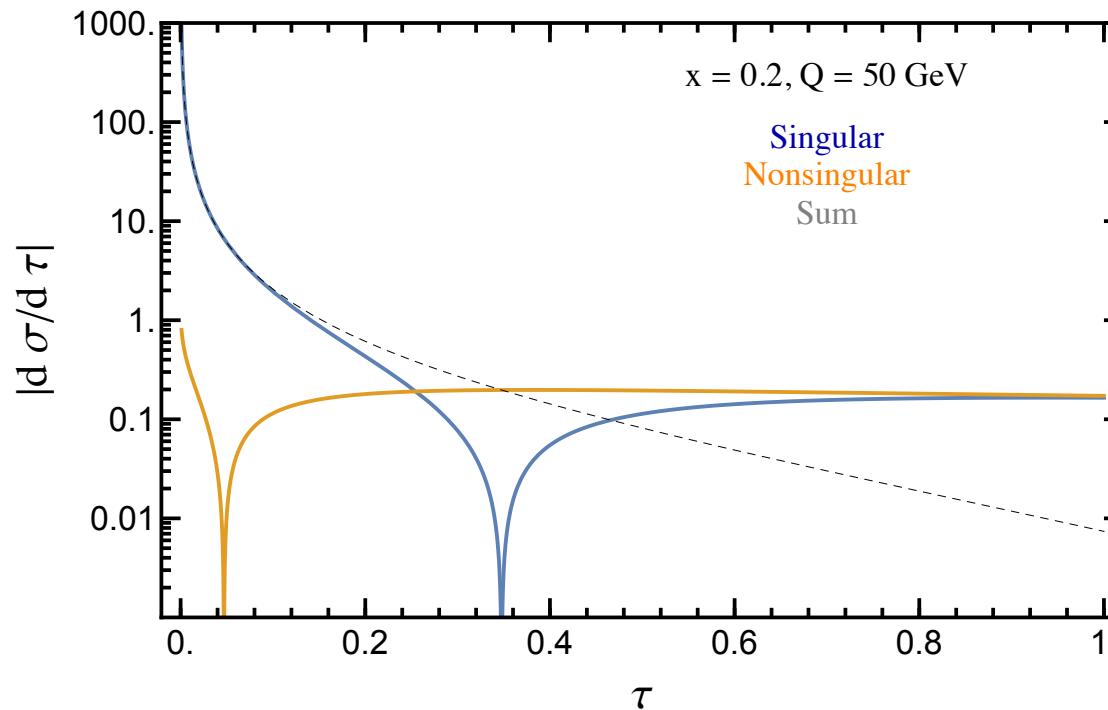
larger x



Log vs Non-Logs in DIS

(singular versus nonsingular)

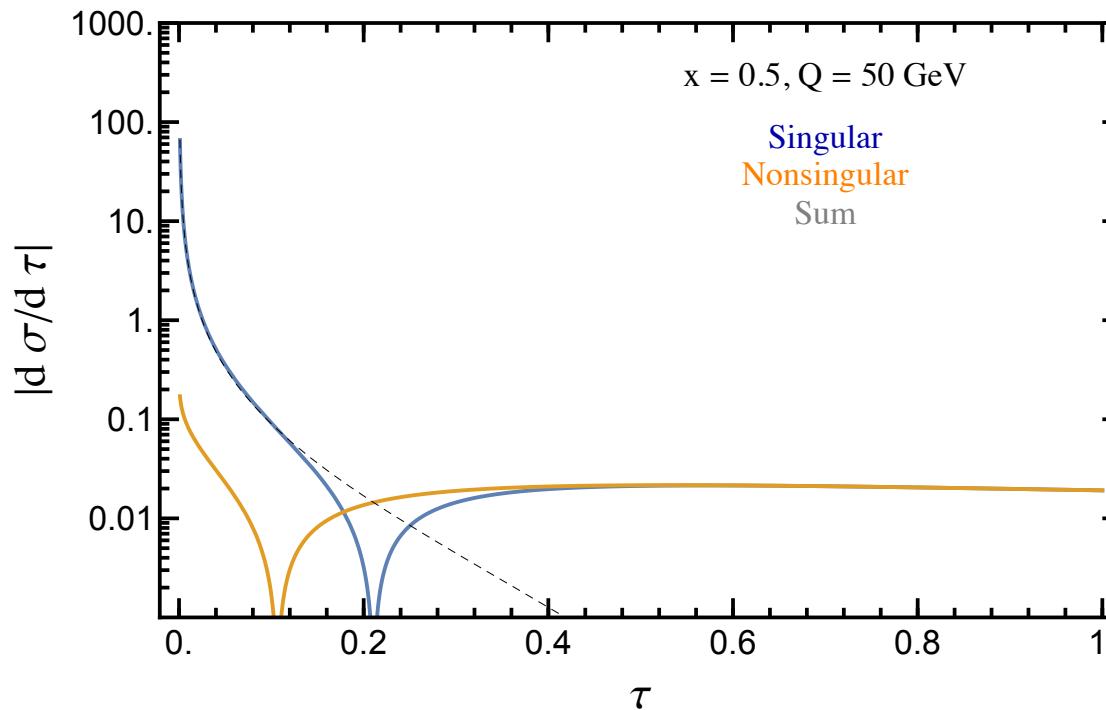
larger x



Log vs Non-Logs in DIS

(singular versus nonsingular)

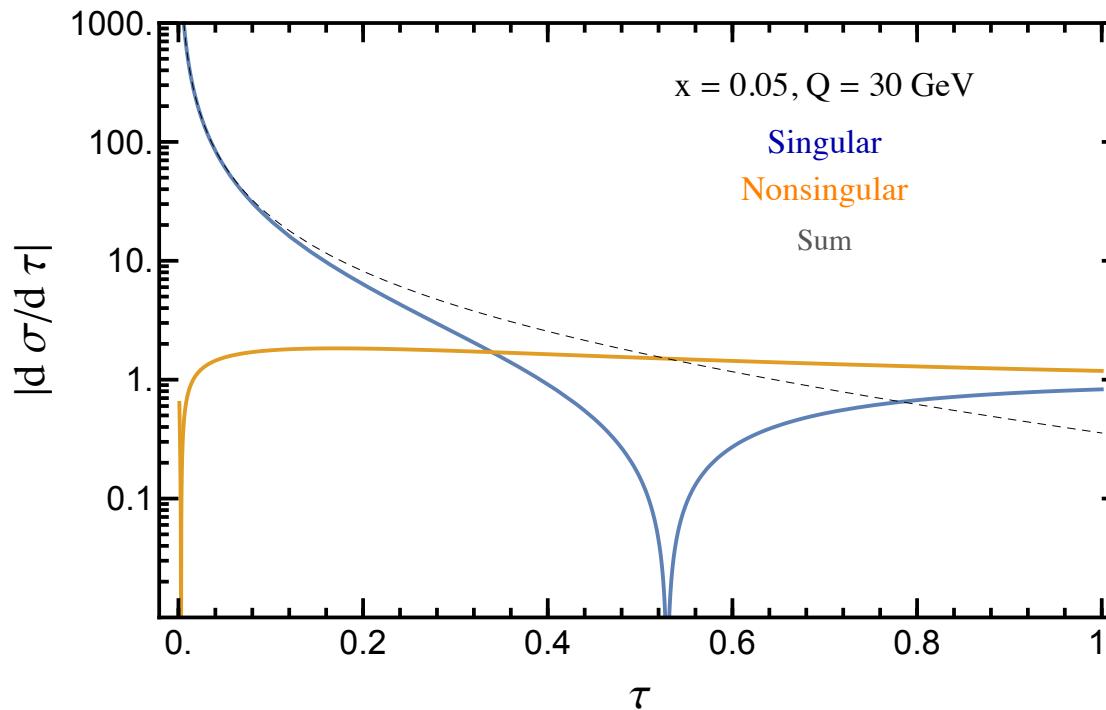
larger x



Log vs Non-Logs in DIS

(singular versus nonsingular)

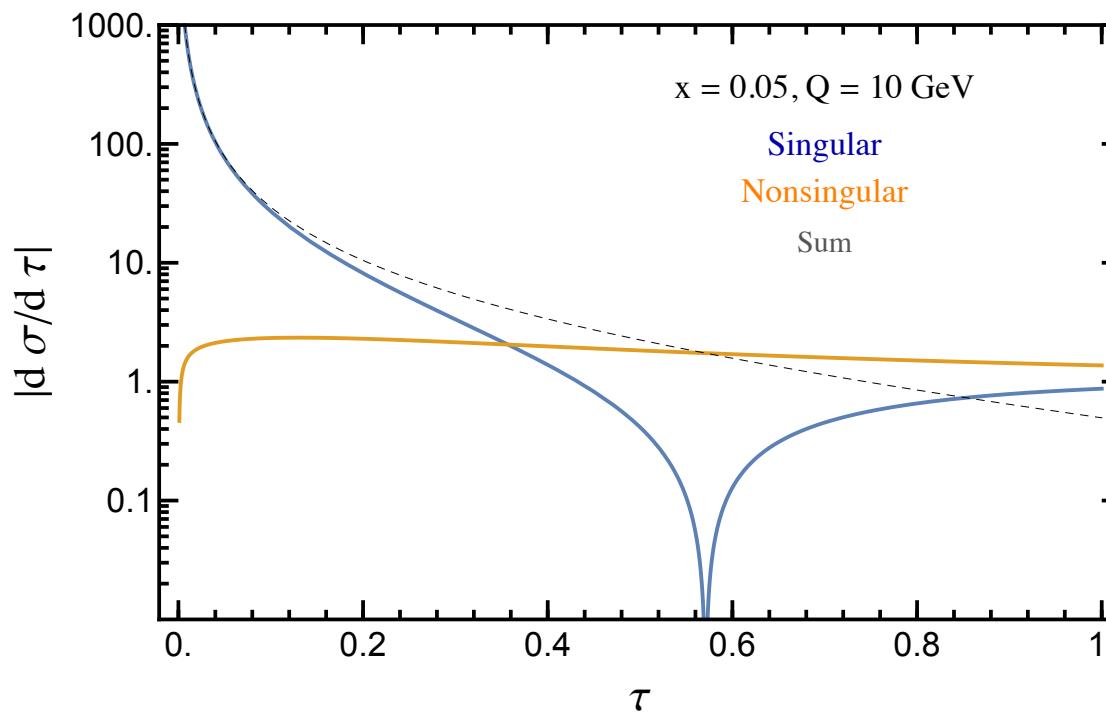
smaller Q



Log vs Non-Logs in DIS

(singular versus nonsingular)

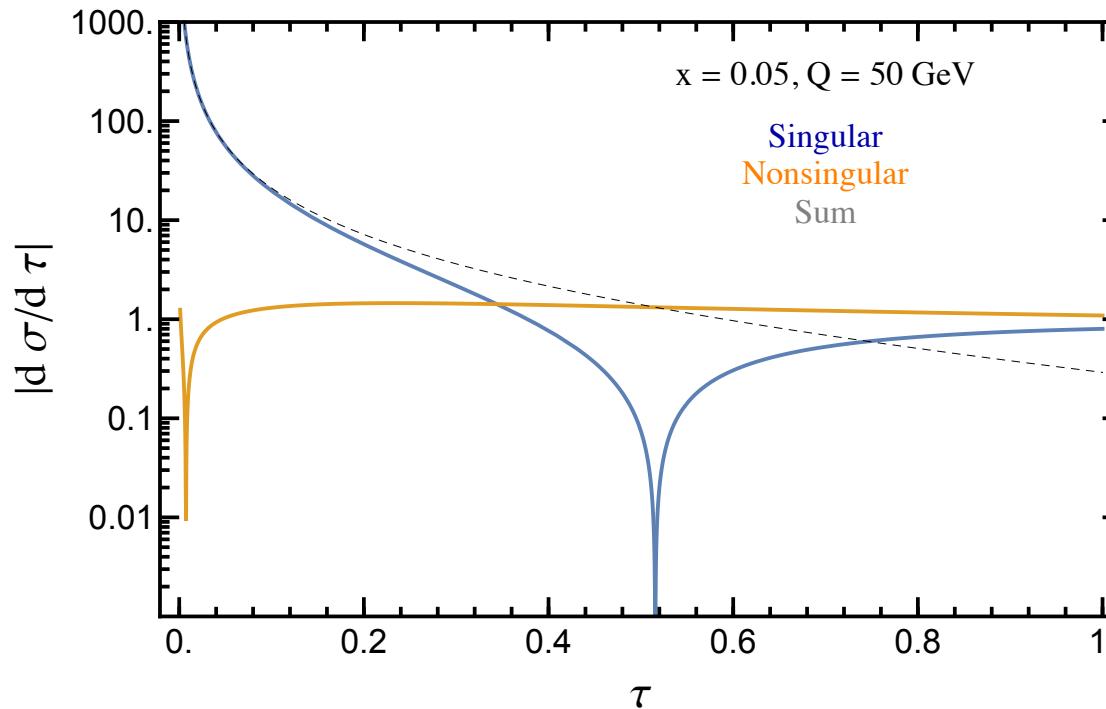
smaller Q



Log vs Non-Logs in DIS

(singular versus nonsingular)

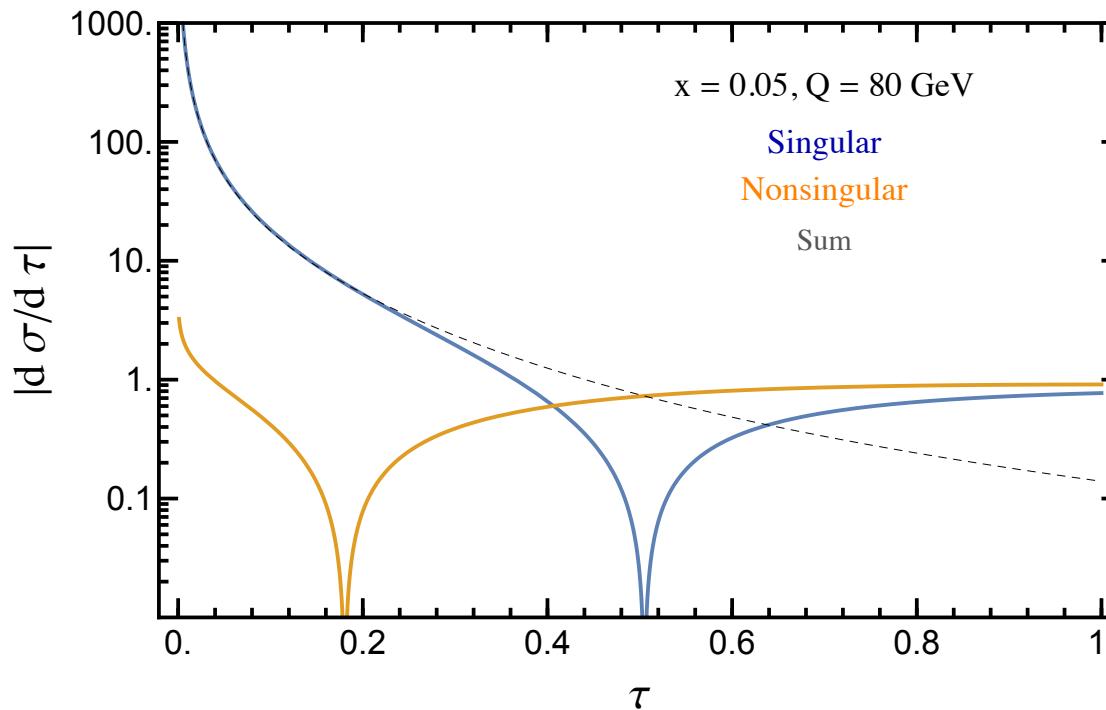
reset



Log vs Non-Logs in DIS

(singular versus nonsingular)

larger Q



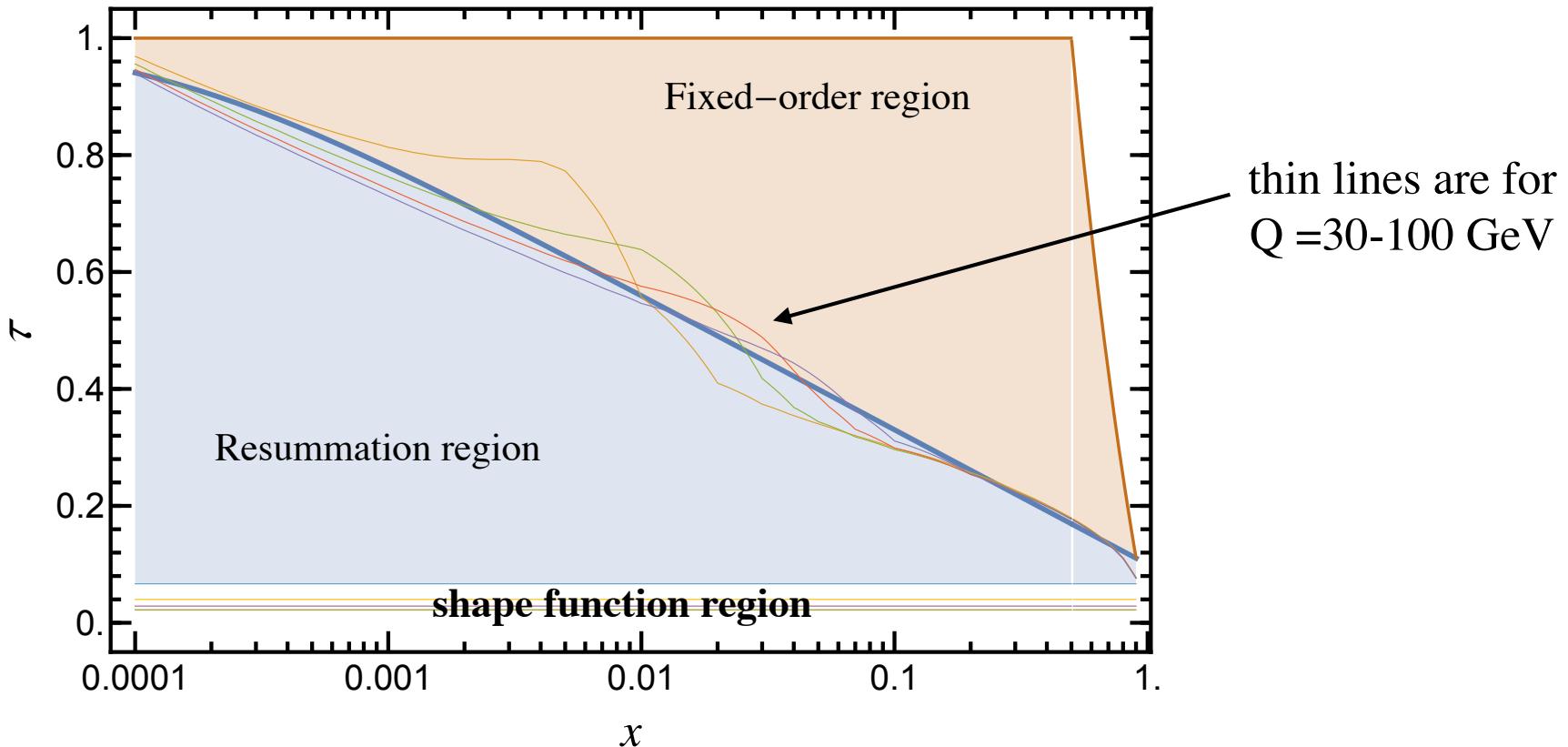
Log vs Non-Logs in DIS

(singular versus nonsingular)

larger Q



Log vs Non-Logs: Summary



SCET works better for smaller x region at $O(\alpha_s)$!

Toward N^3LL

	$\Gamma[\alpha_s]$	$\gamma[\alpha_s]$	$\beta[\alpha_s]$	$\{H, J, B, S\}[\alpha_s]$
LL	α_s	1	α_s	1
NLL	α_s^2	α_s	α_s^2	1
NNLL	α_s^3	α_s^2	α_s^3	α_s
N^3LL	α_s^4	α_s^3	α_s^4	α_s^2

Pade approx.

$$\Gamma_3^q = (1 \pm 2) \frac{(\Gamma_2^q)^2}{\Gamma_1^q}$$

0.2 % in e^+e^- thrust

B function up to 2 loops

Gaunt, Stahlhofen,
Tackmann 1401.5478

$S_{ee} = S_{ep} = S_{pp}$ up to 2 loops

Catani and Grazzini 2000
DK, Lee and Labun 2015

Kelley, Schabinger,
Schwartz, Zhu

Soft function at 2 loop

Catani and Grazzini 2000
DK, Labun, and Lee 2015

- Wilson lines are different.

e⁺e⁻: $\langle 0 | \bar{T} \left[\tilde{Y}_{\bar{n}}^\dagger \tilde{Y}_n \right] \delta(\dots) T \left[\tilde{Y}_n^\dagger \tilde{Y}_{\bar{n}} \right] | 0 \rangle$

ep: $\langle 0 | \bar{T} \left[Y_{\bar{n}}^\dagger \tilde{Y}_n \right] \delta(\dots) T \left[\tilde{Y}_n^\dagger Y_{\bar{n}} \right] | 0 \rangle$

pp: $\langle 0 | \bar{T} \left[Y_{\bar{n}}^\dagger Y_n \right] \delta(\dots) T \left[Y_n^\dagger Y_{\bar{n}} \right] | 0 \rangle$

- Well known at $O(\alpha_s)$:

virtual is scaleless and zero.

no loop in the real.

- at $O(\alpha_s^2)$:

virtual are scaleless and zero.

2 gluon cut has no loop.

1 gluon cut needs to be checked.

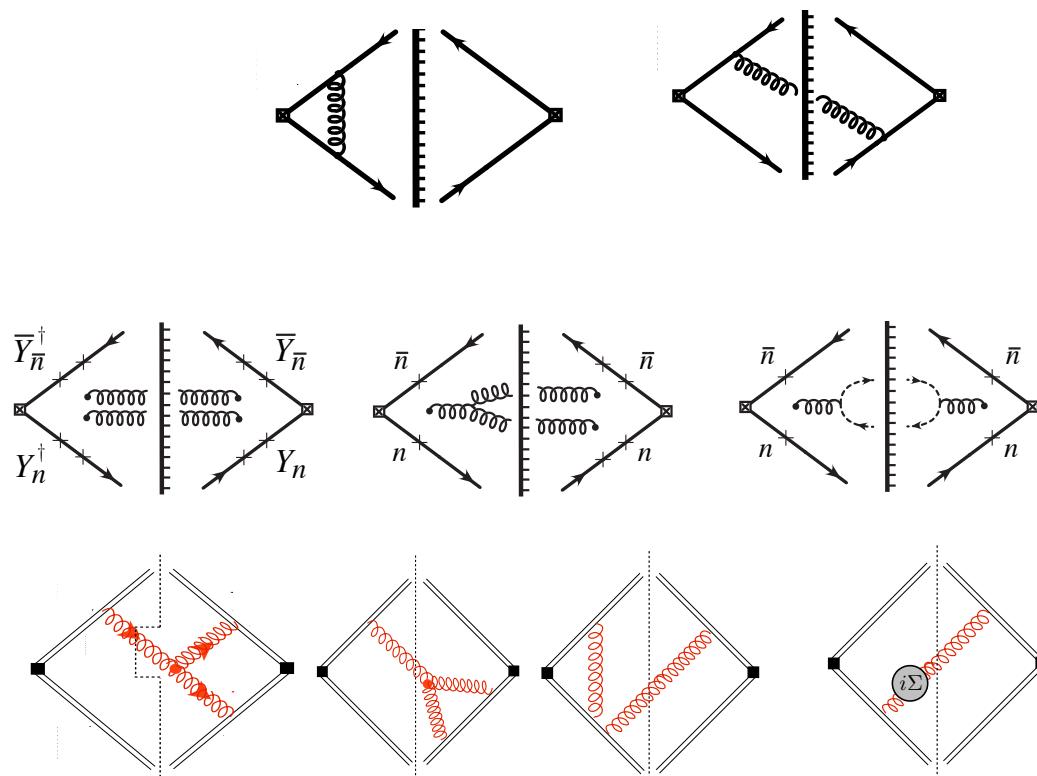
Nontrivial only for triple gluon vertex

Same for e⁺e⁻, ep, pp!

incoming and outgoing lines give different sign in the Eikonal propagator

$$\frac{i}{n \cdot k \pm i\epsilon}$$

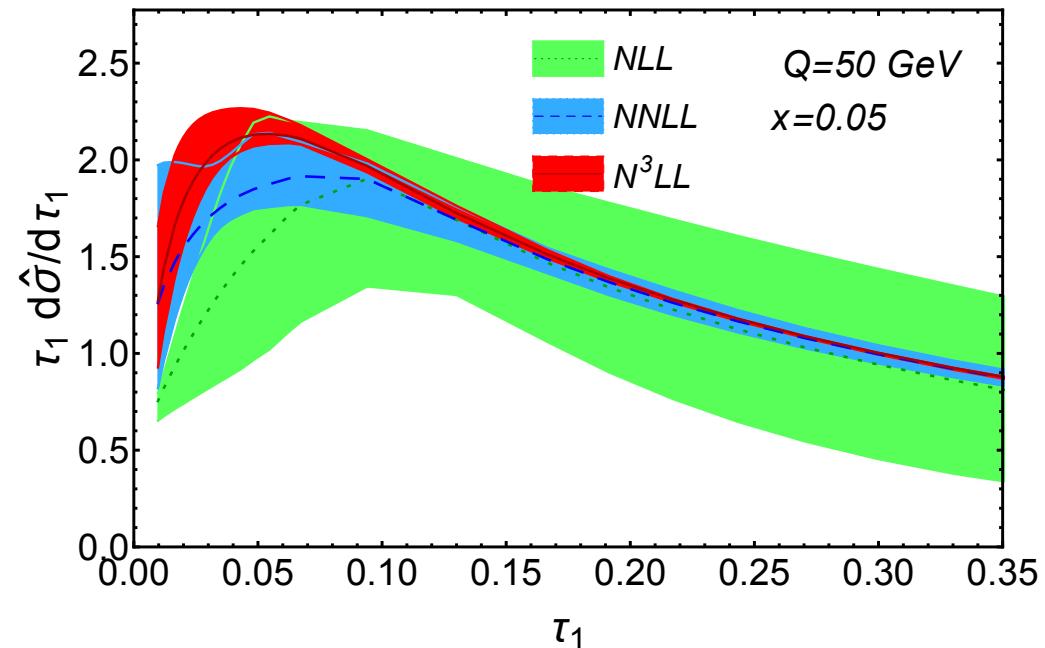
The sign could matter in the loop integral.



Perturbative Convergence

Preliminary

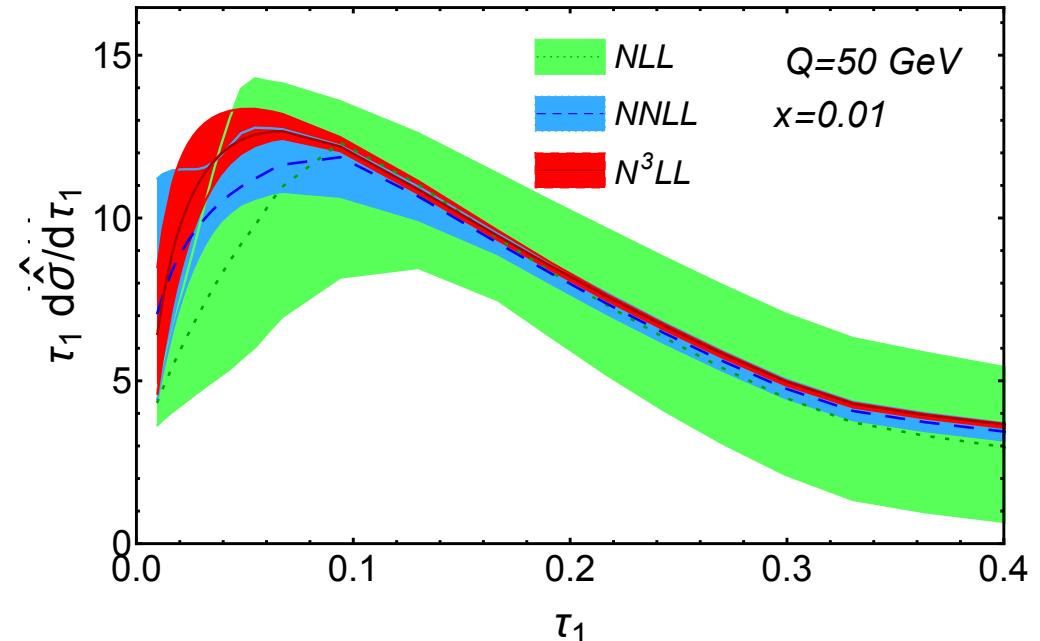
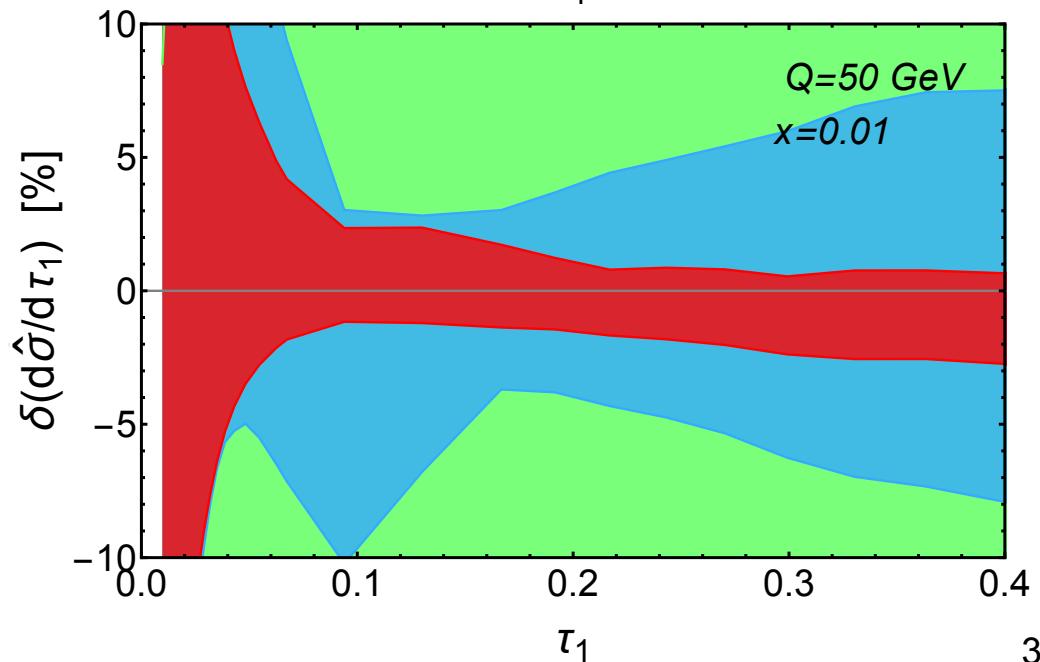
- NLL
- $NNLL$
- N^3LL



Perturbative Convergence

smaller x

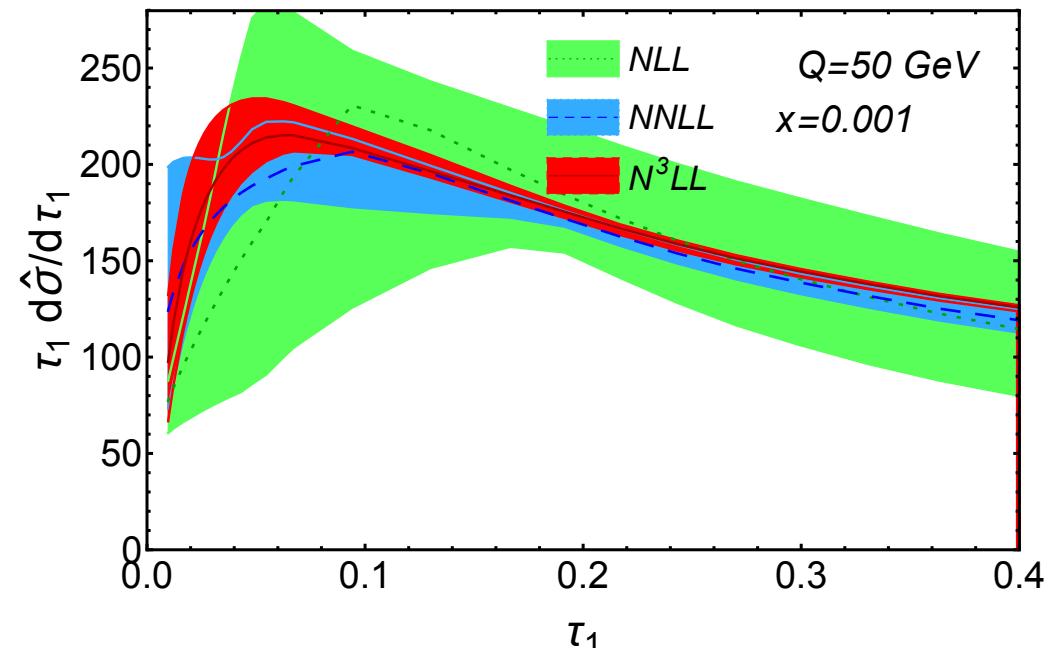
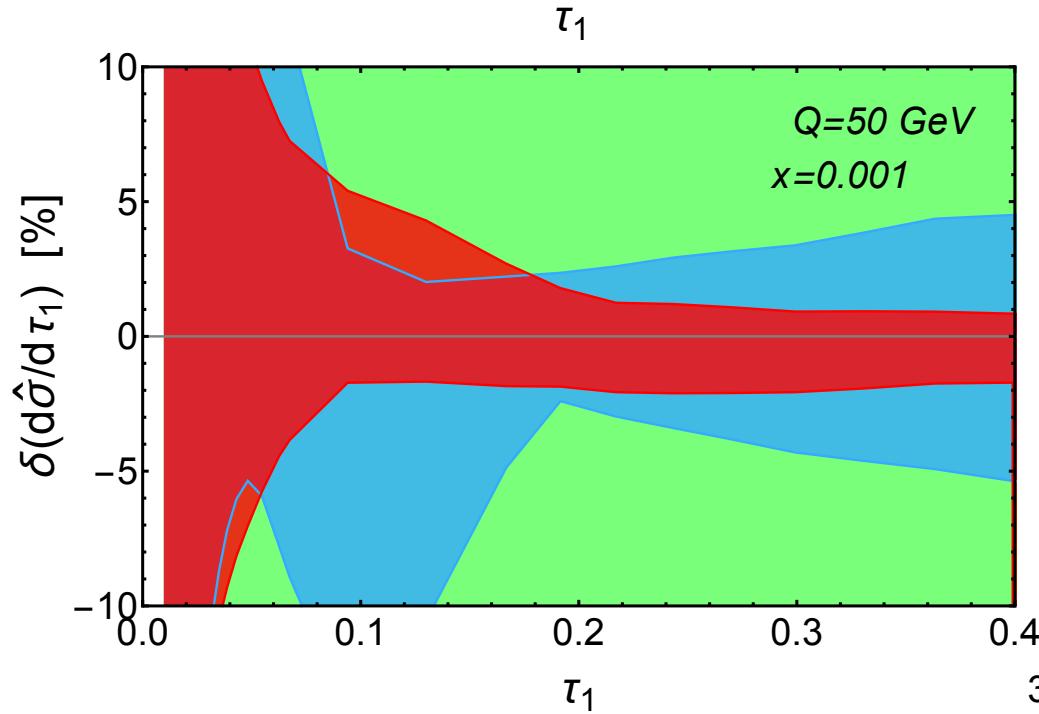
- $\text{---} \cdot \text{---}$ NLL
- $\text{---} \cdot \text{---}$ $NNLL$
- $\text{---} \cdot \text{---}$ N^3LL



Perturbative Convergence

smaller x

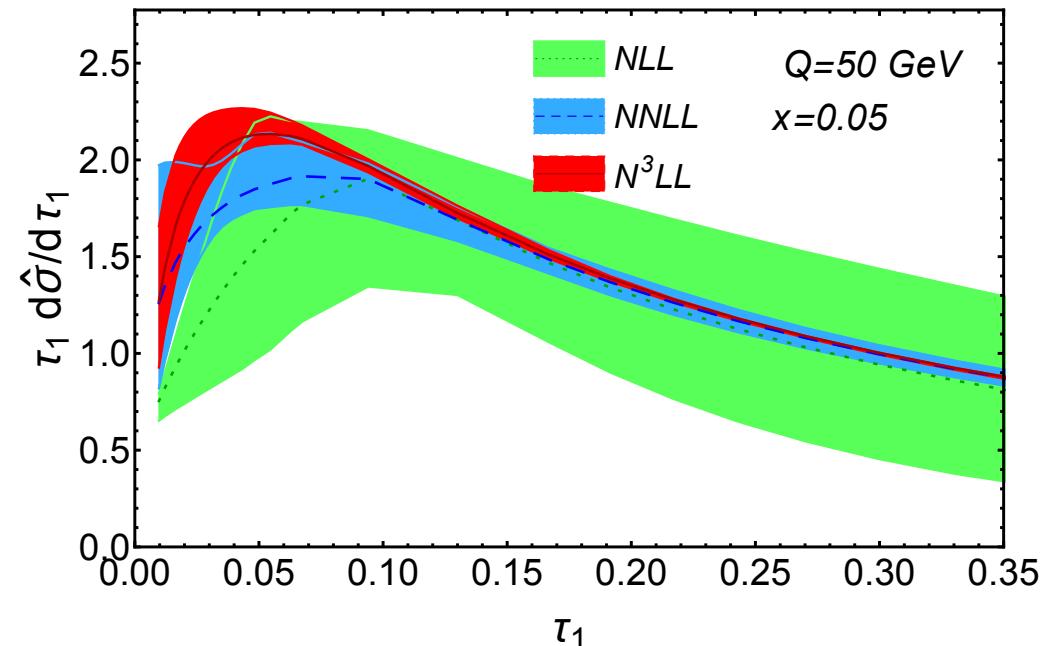
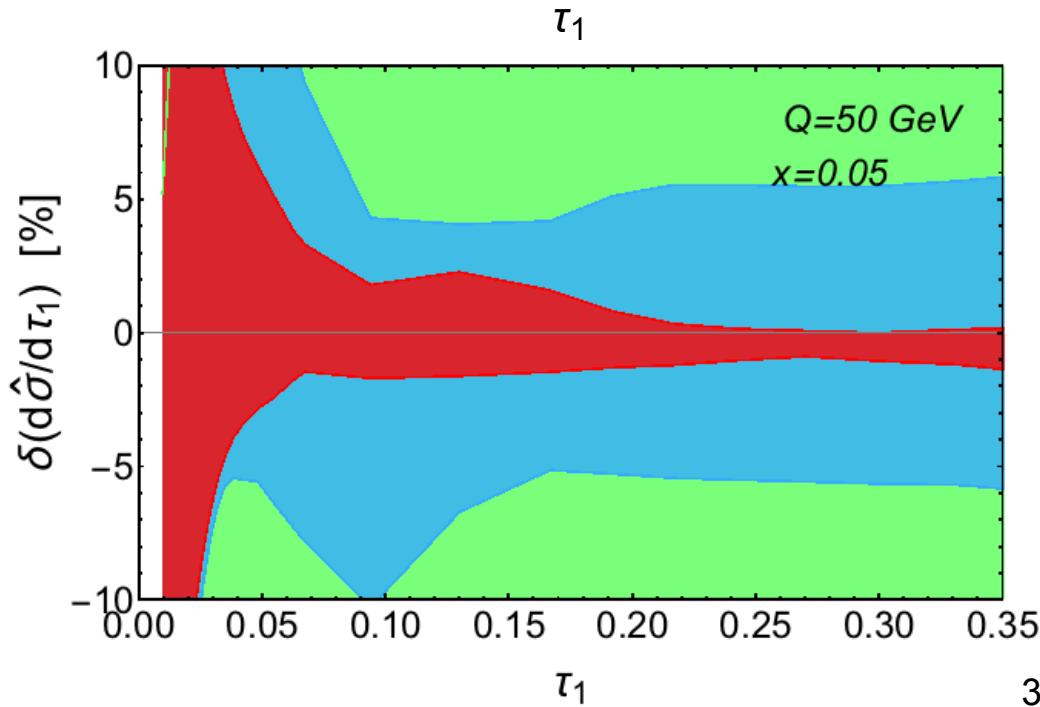
- NLL
- NNLL
- N^3LL



Perturbative Convergence

reset

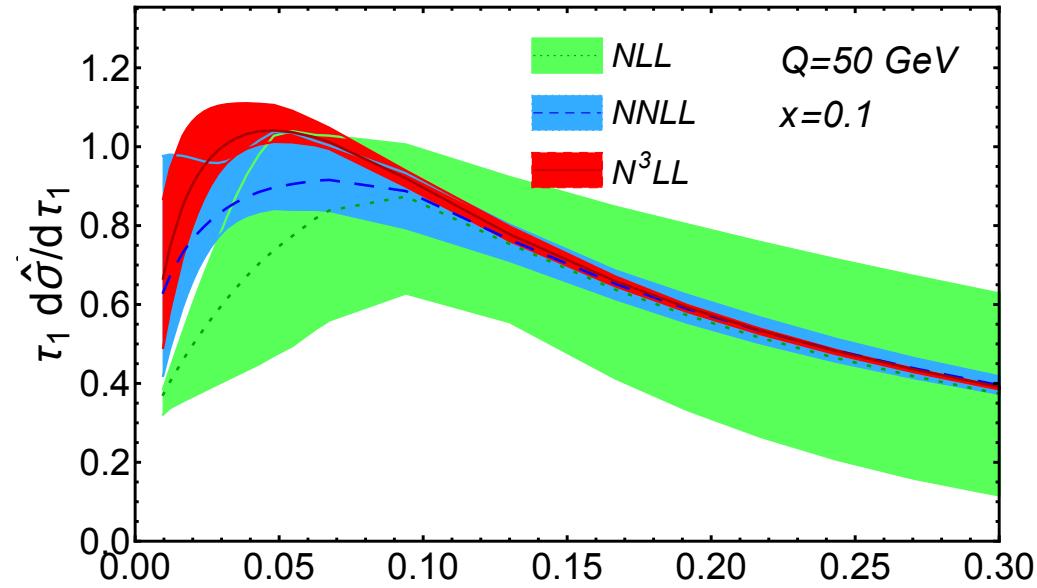
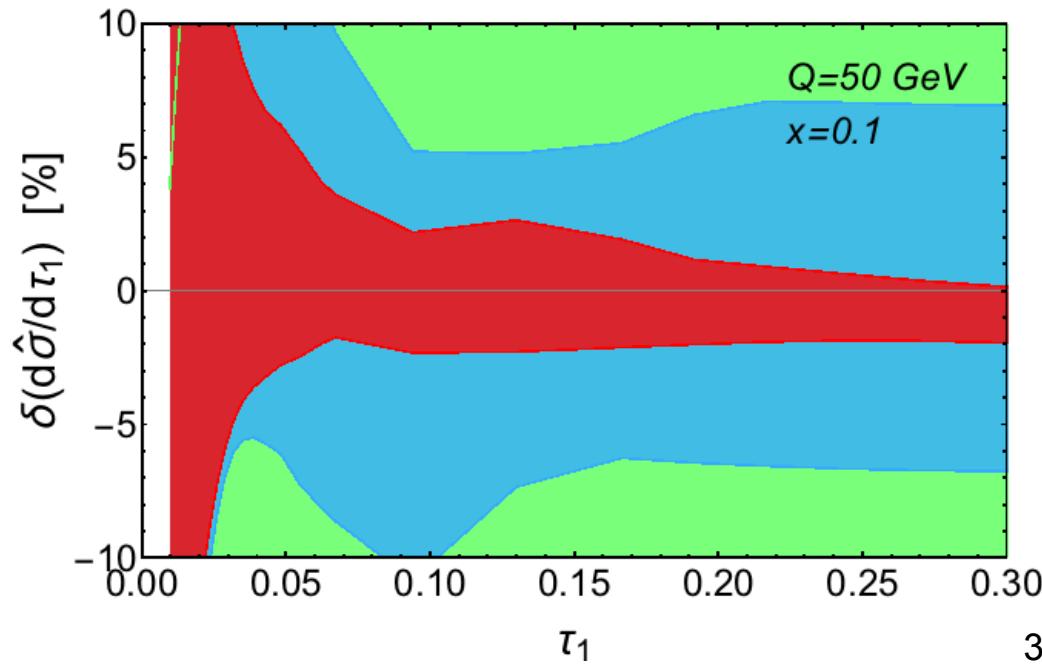
- NLL
- $NNLL$
- N^3LL



Perturbative Convergence

larger x

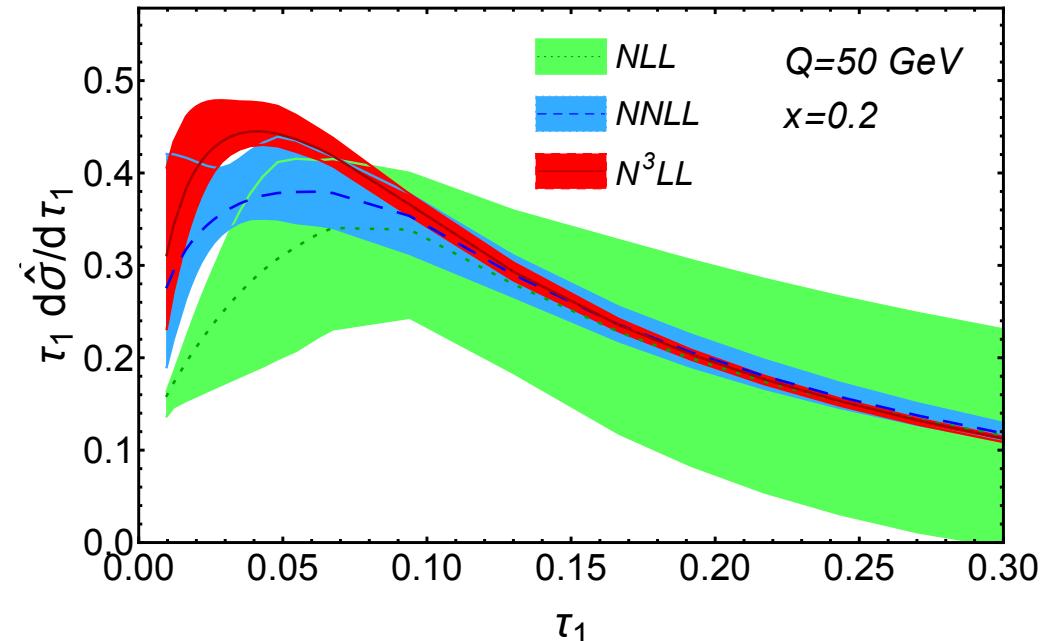
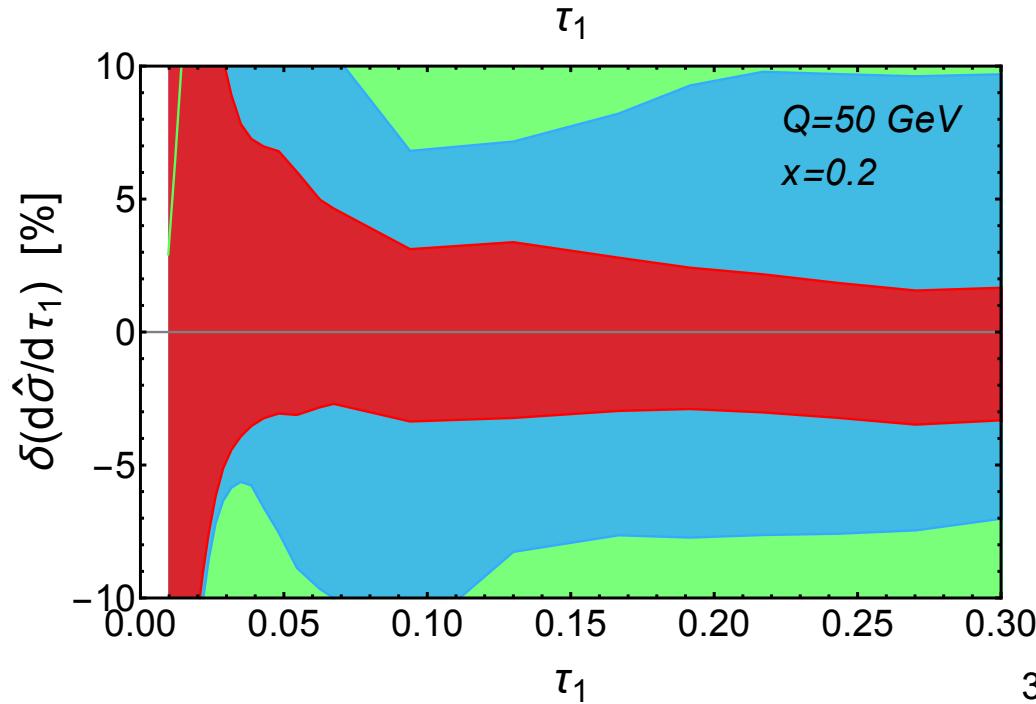
- NLL
- NNLL
- N^3LL



Perturbative Convergence

larger x

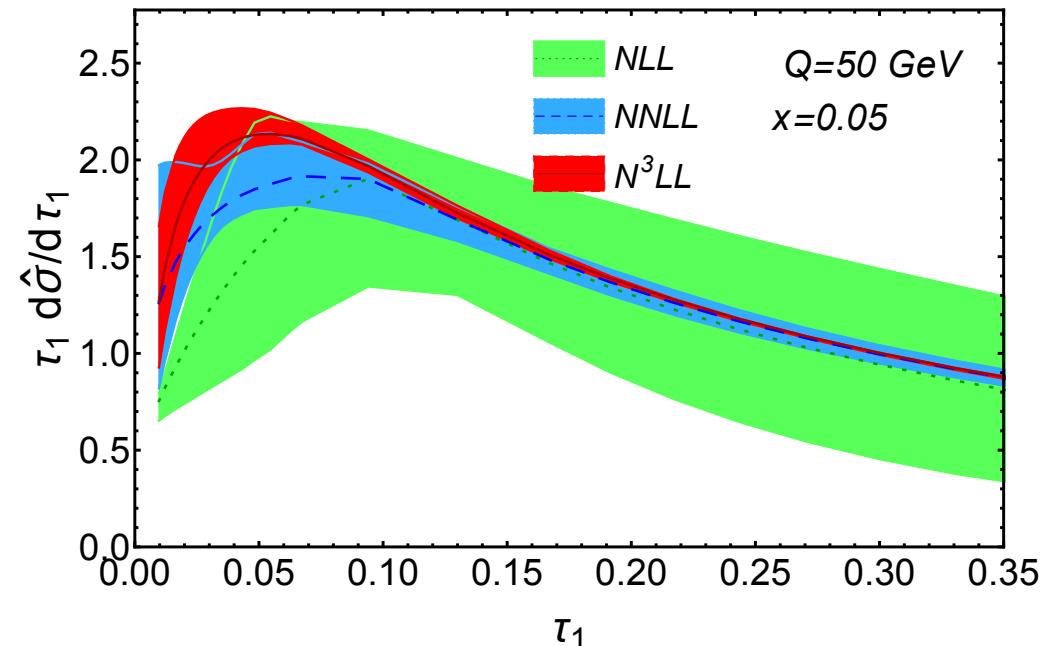
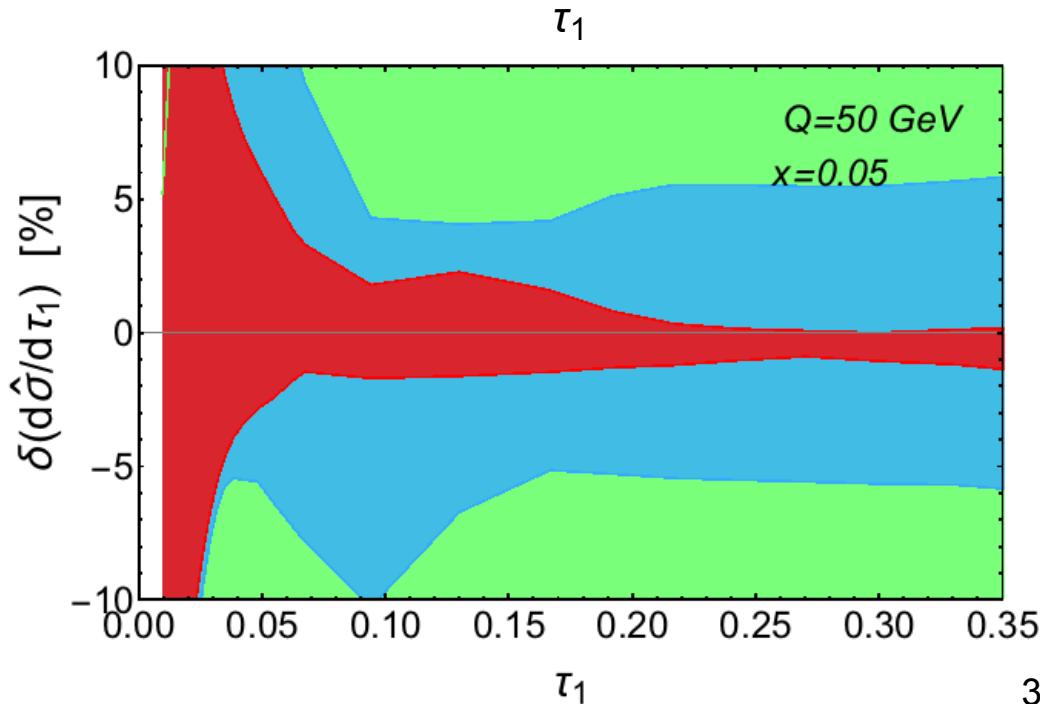
- $\text{---} \cdot \text{---}$ NLL
- $\text{---} \cdot \text{---}$ $NNLL$
- $\text{---} \cdot \text{---}$ N^3LL



Perturbative Convergence

reset

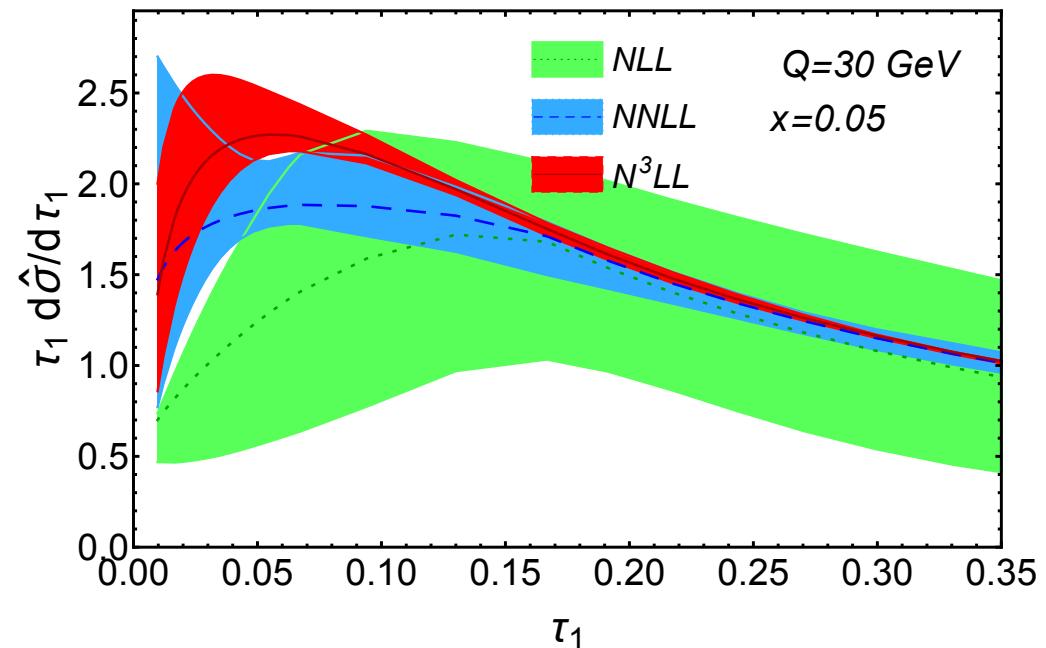
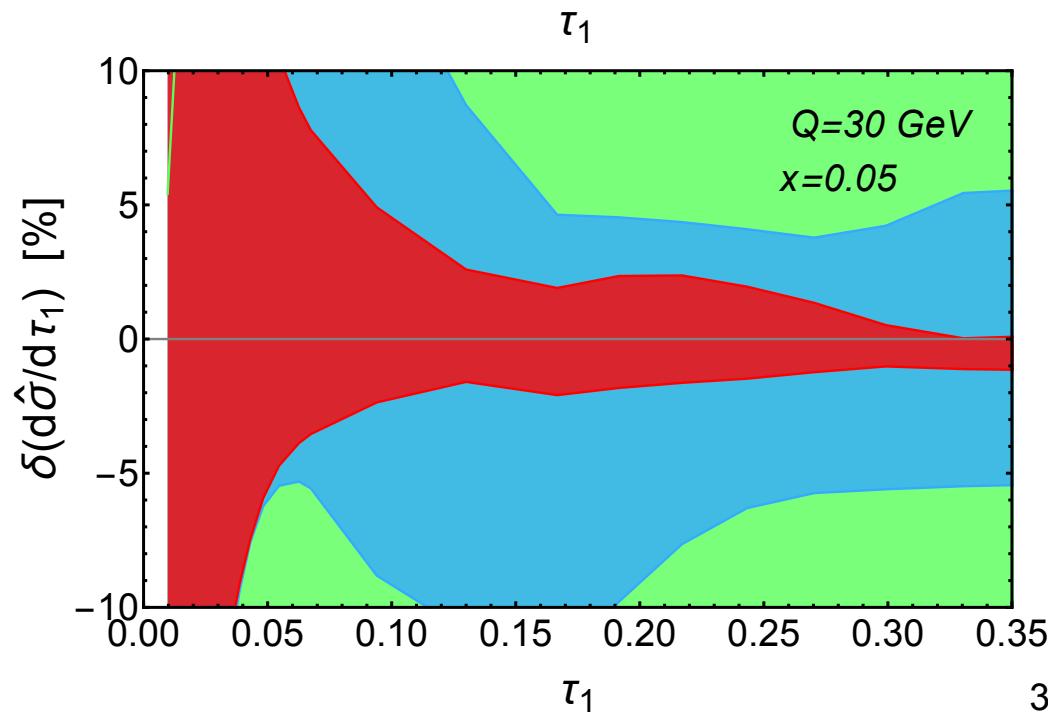
- NLL
- $NNLL$
- N^3LL



Perturbative Convergence

smaller Q

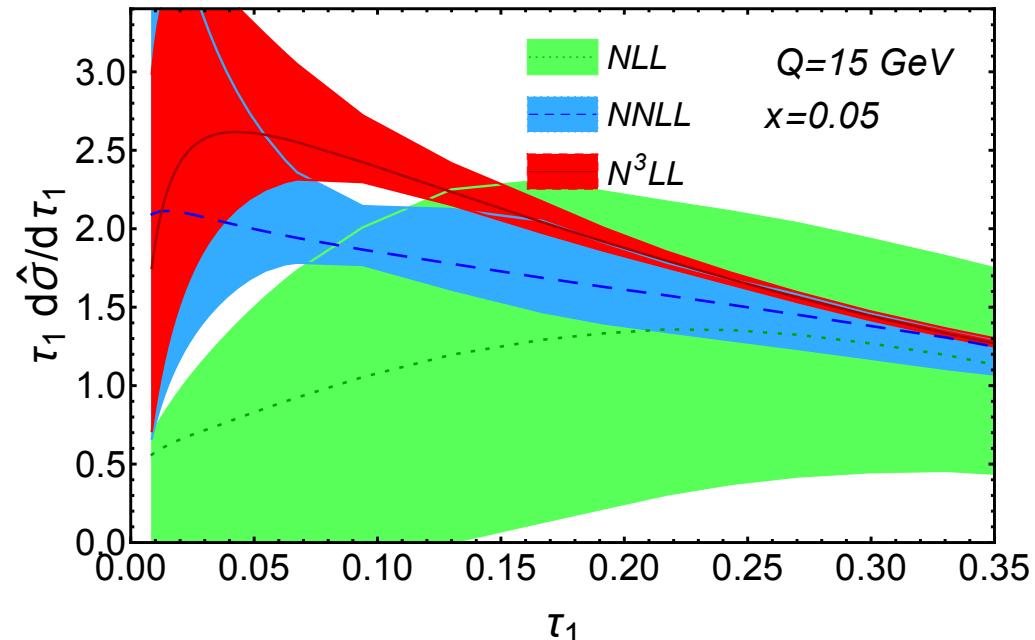
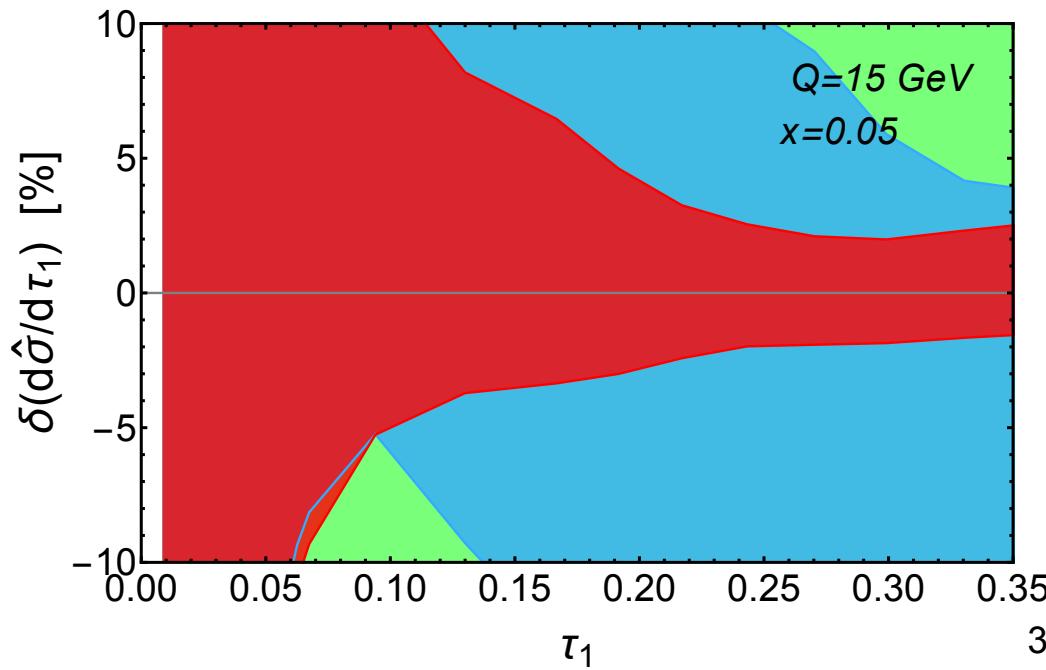
- NLL
- NNLL
- N^3LL



Perturbative Convergence

smaller Q

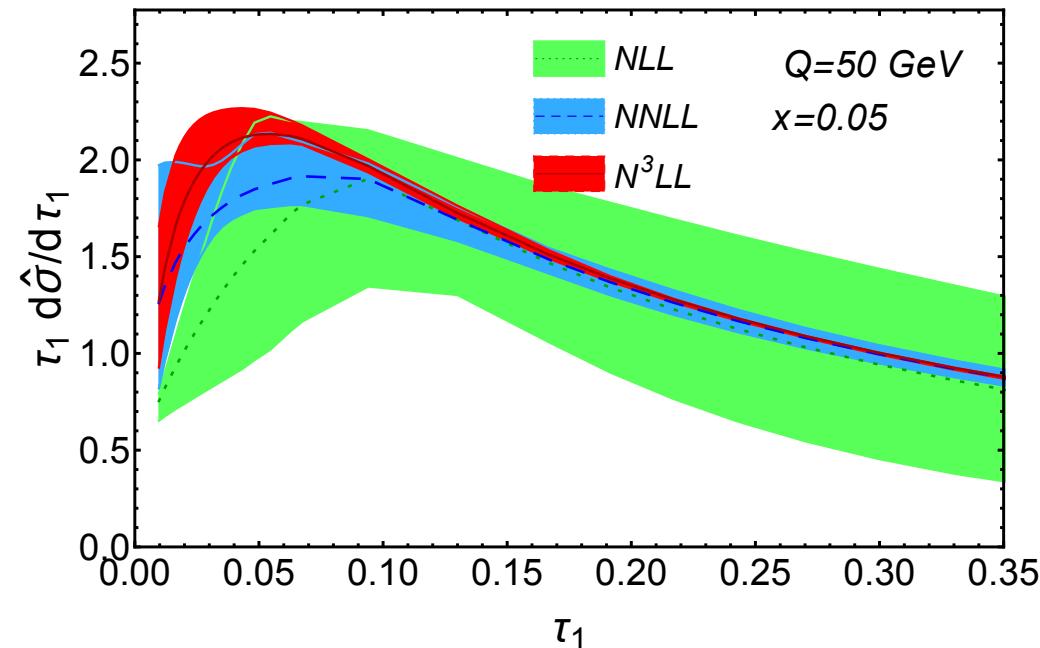
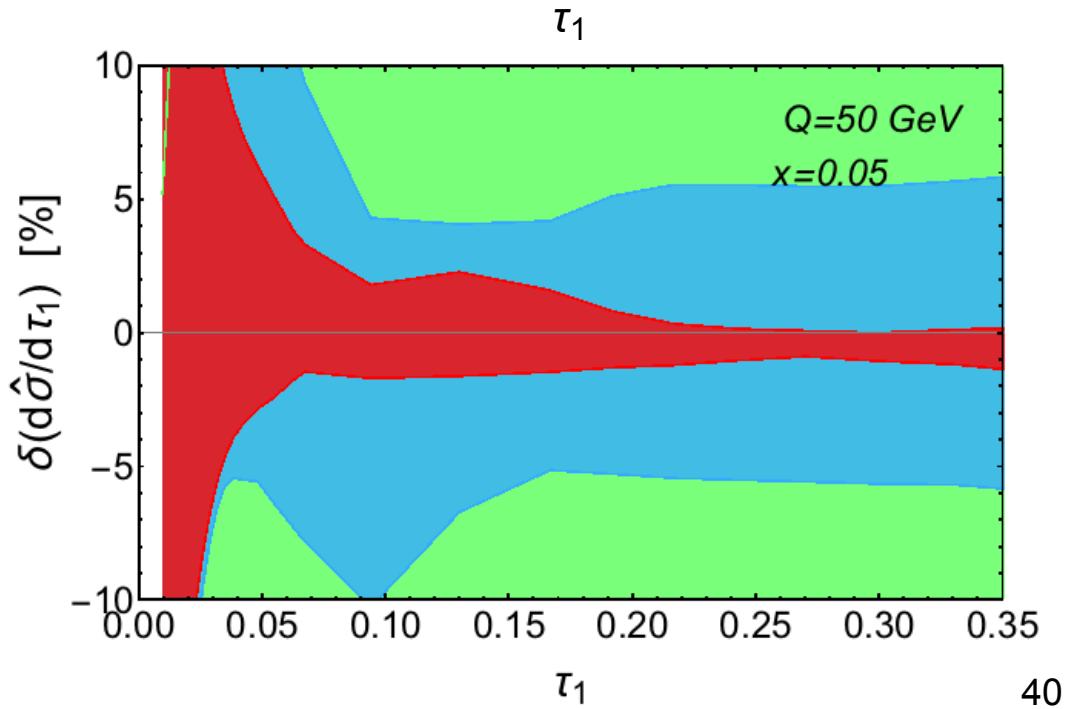
- NLL
- NNLL
- N^3LL



Perturbative Convergence

reset

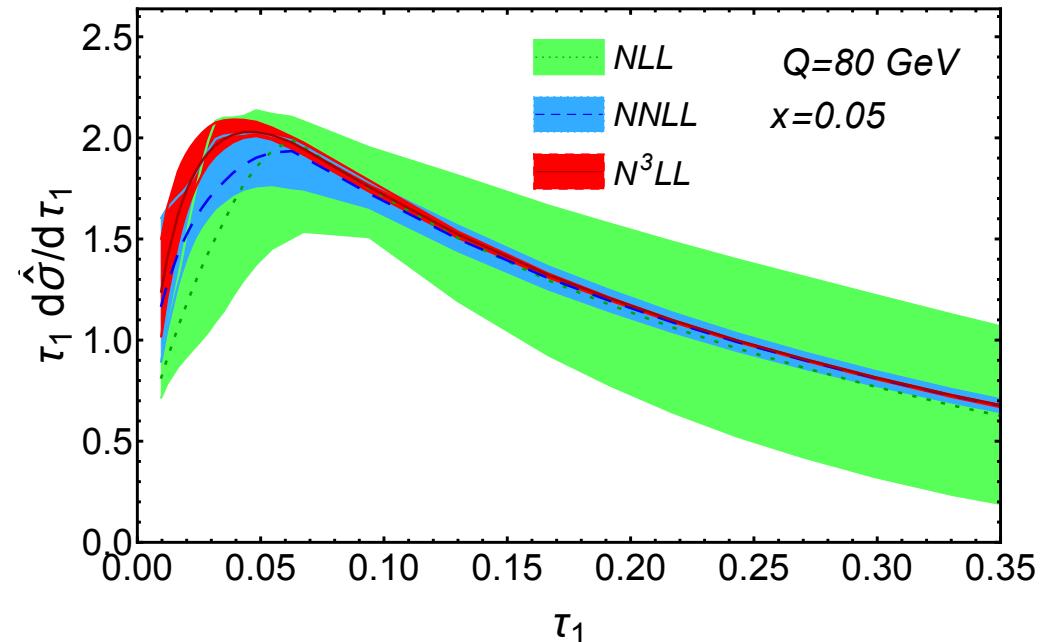
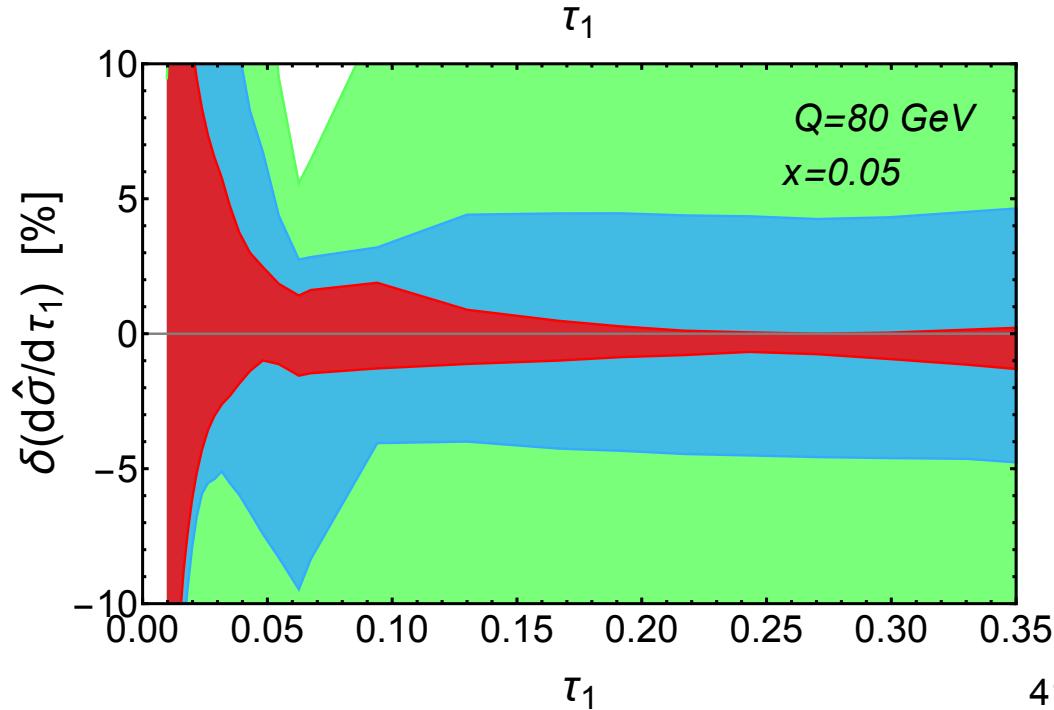
- NLL
- $NNLL$
- N^3LL



Perturbative Convergence

larger Q

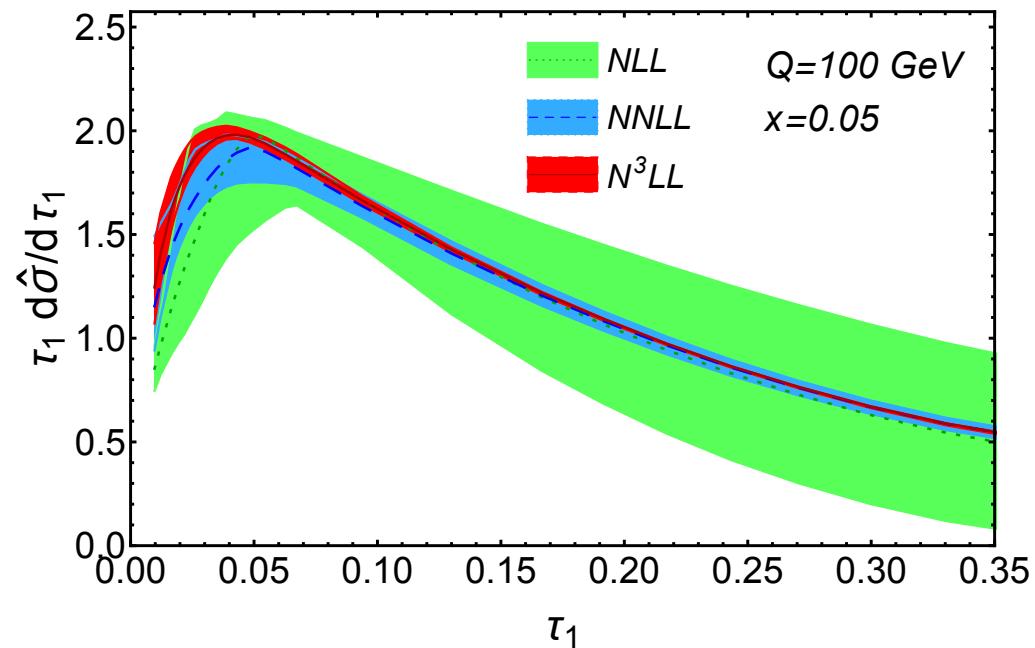
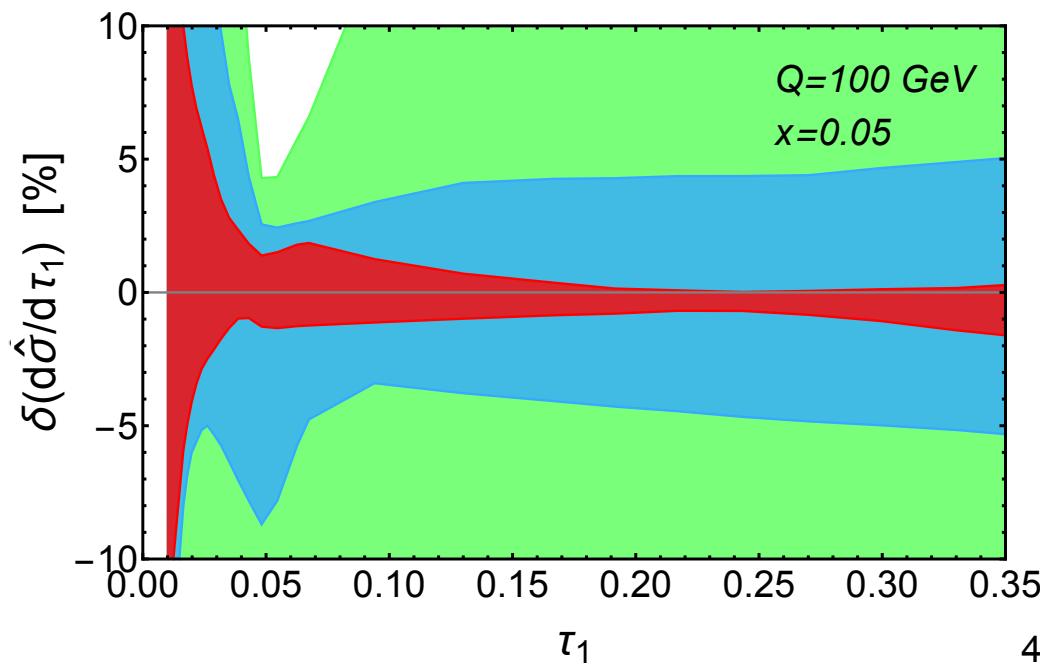
- NLL
- NNLL
- N^3LL



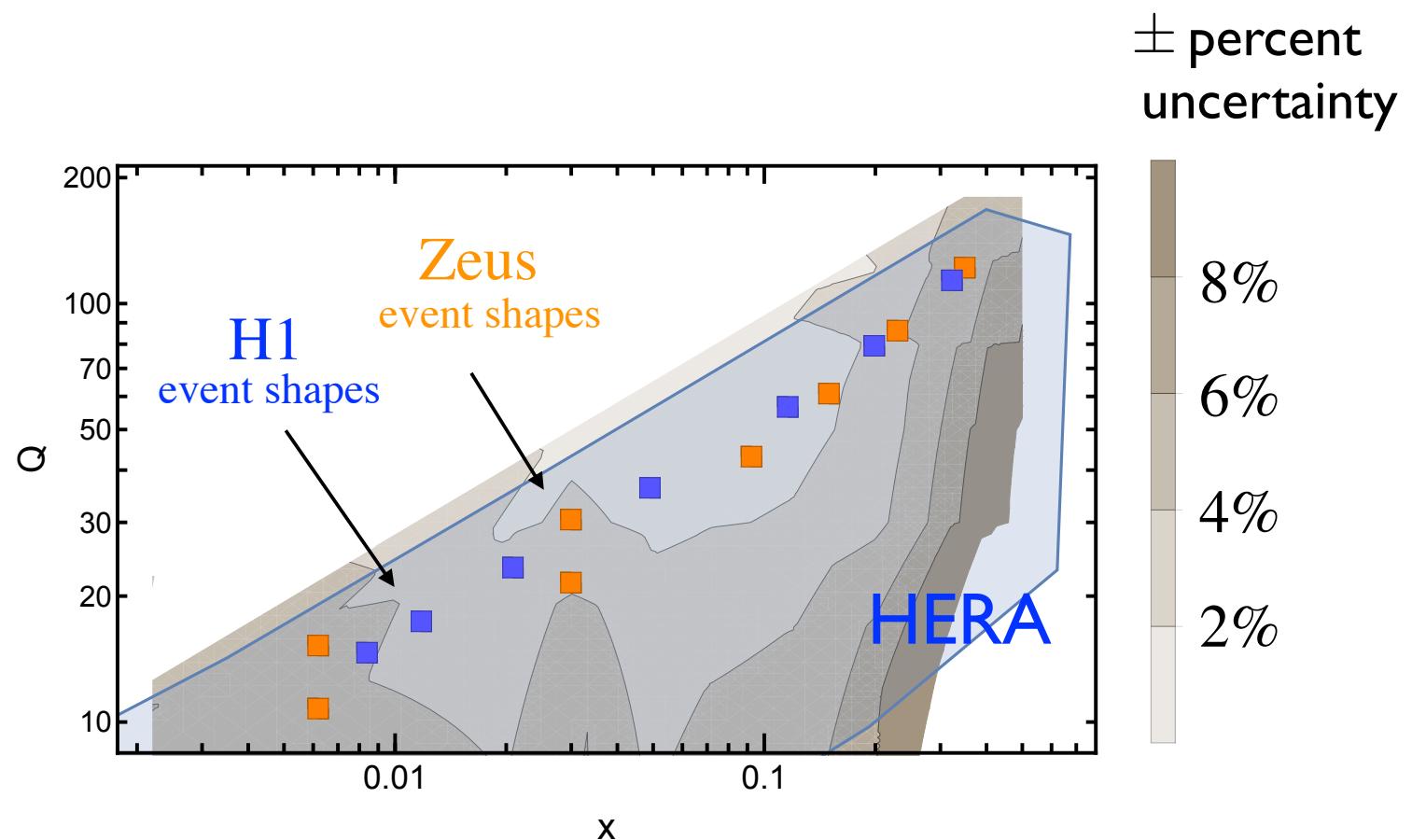
Perturbative Convergence

larger Q

- NLL
- NNLL
- N^3LL



Perturbative Convergence: Summary

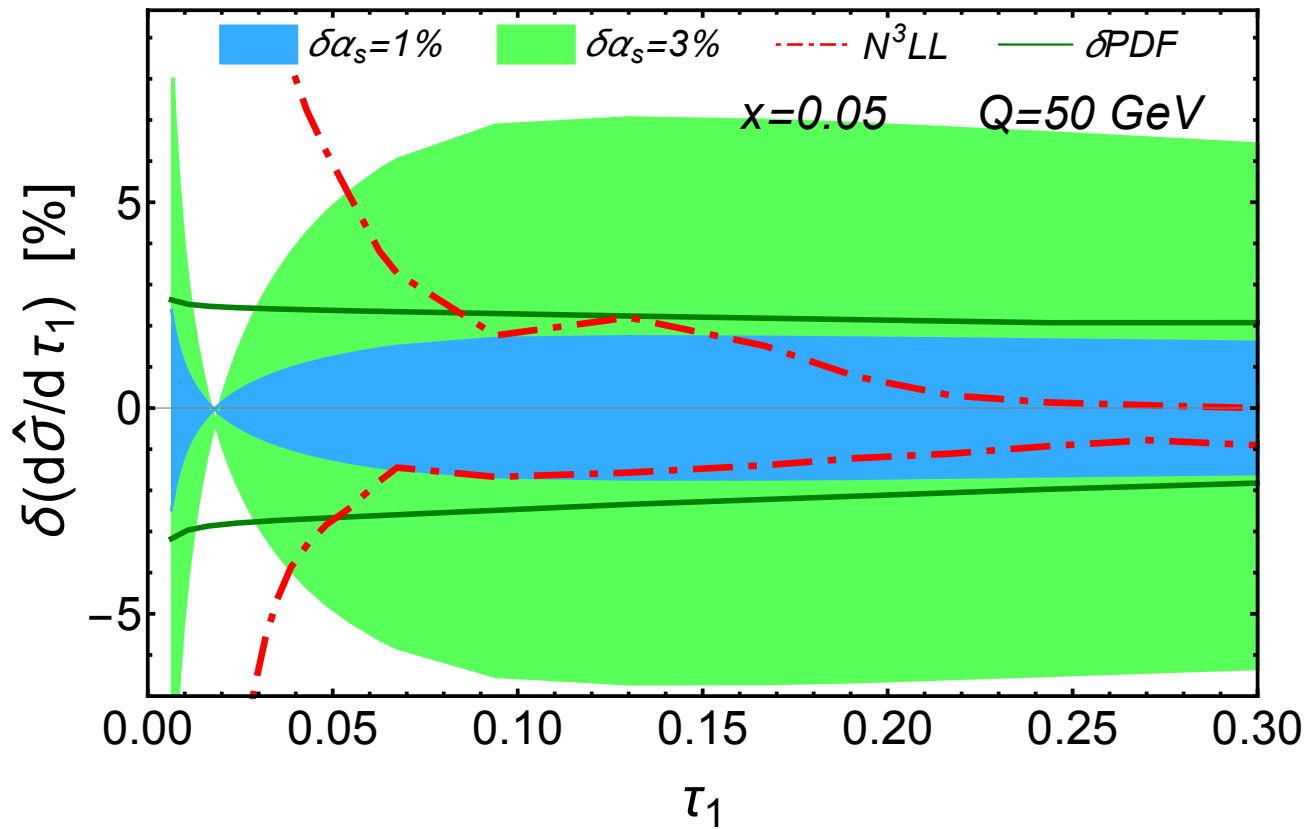


Sensitivity to α_s and PDFs

$\alpha_s(m_Z)$ versus Perturbative & PDF Uncertainty

PDF at 90% conf.

α_s variation includes δPDF



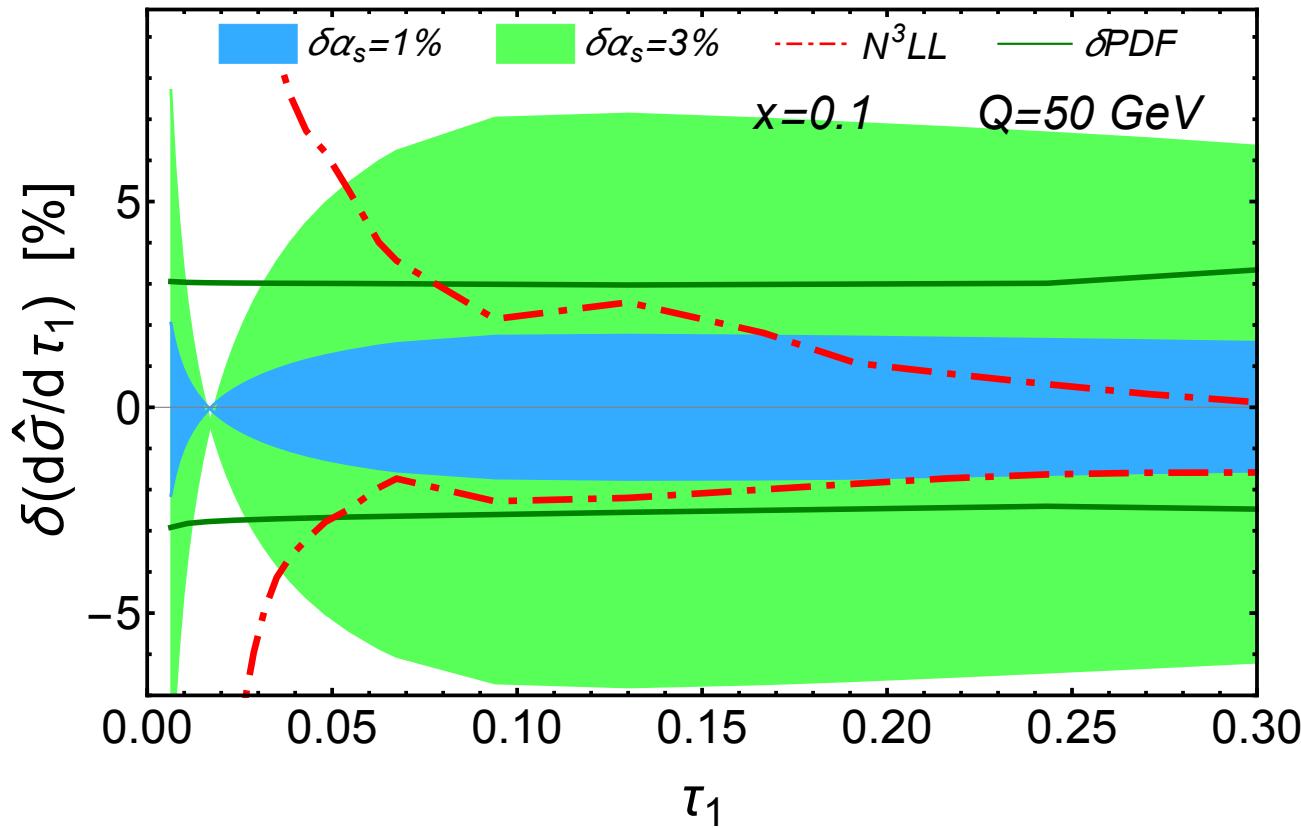
Sensitivity to α_s and PDFs

$\alpha_s(m_Z)$ versus Perturbative & PDF Uncertainty

larger x

PDF at 90% conf.

α_s variation includes δPDF



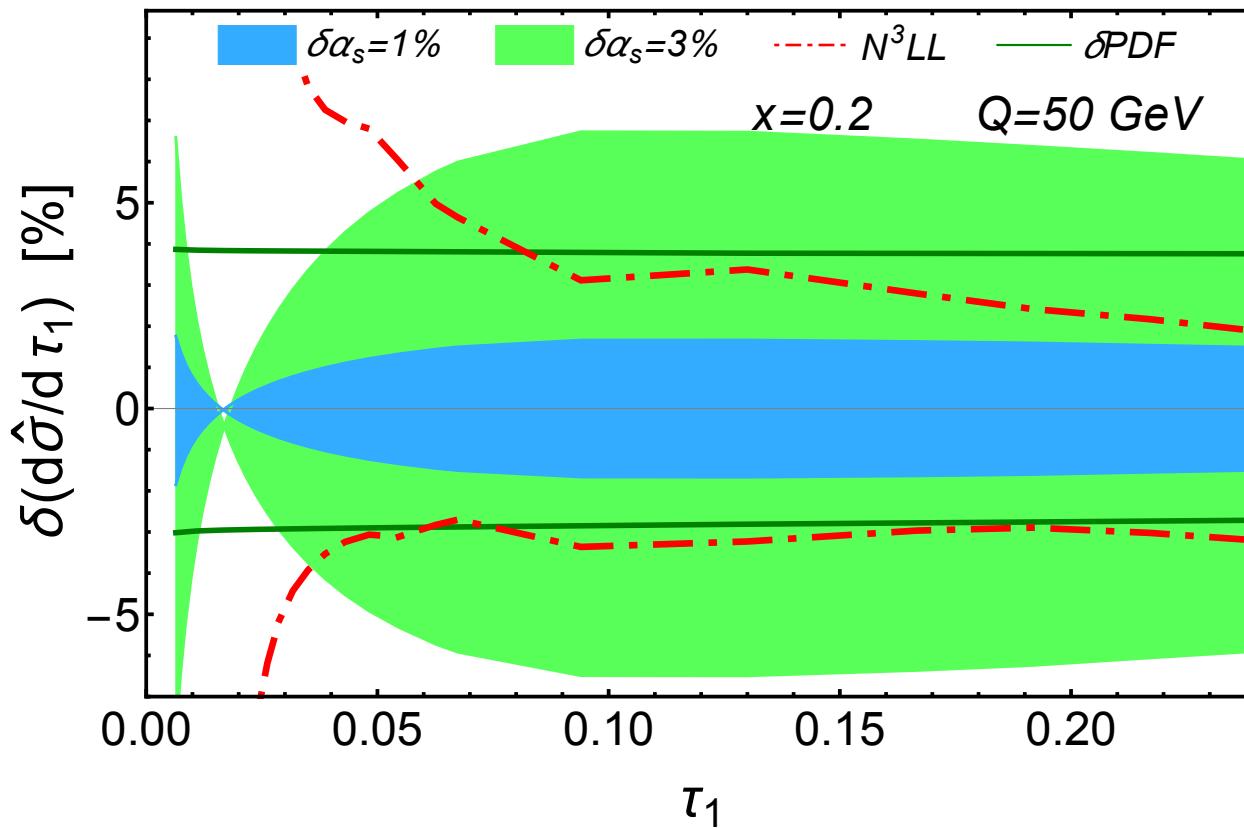
Sensitivity to α_s and PDFs

$\alpha_s(m_Z)$ versus Perturbative & PDF Uncertainty

larger x

PDF at 90% conf.

α_s variation includes δPDF



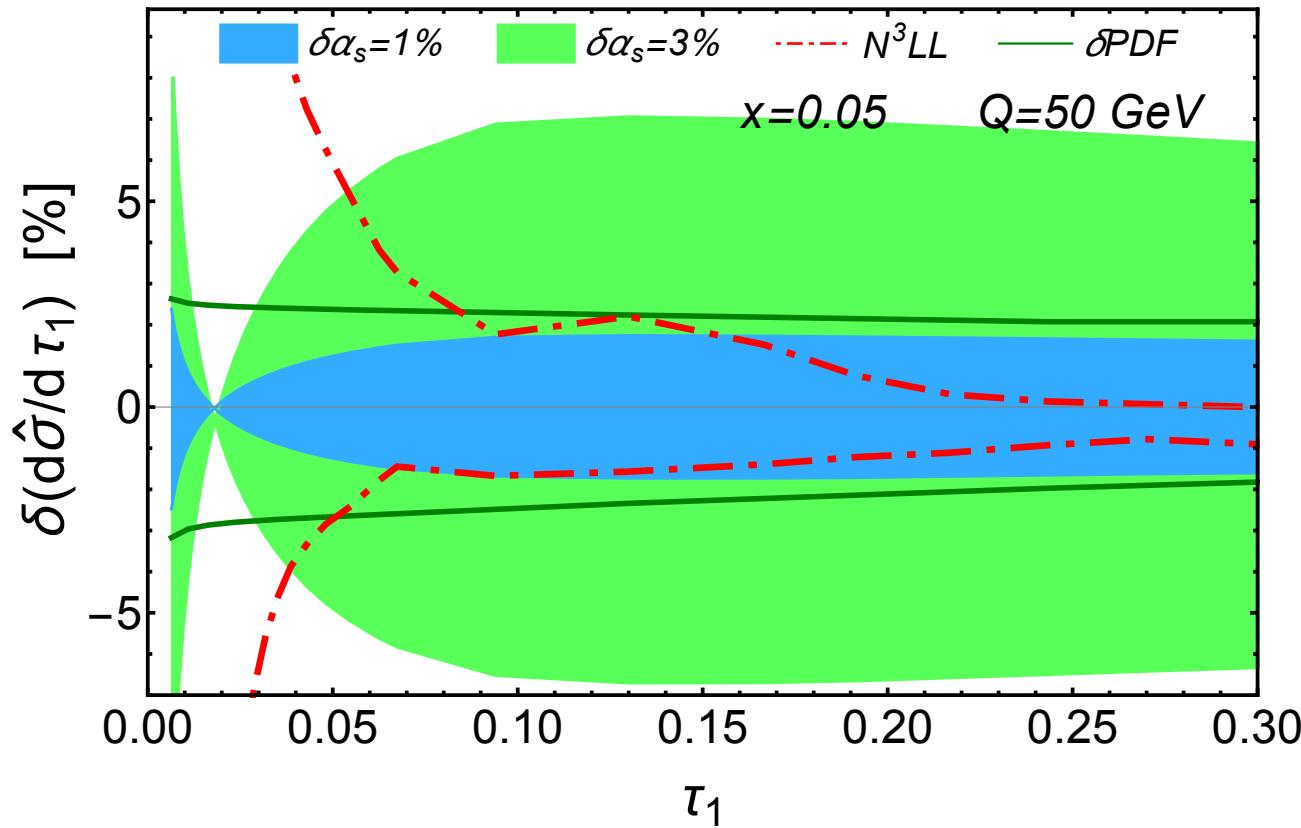
Sensitivity to α_s and PDFs

$\alpha_s(m_Z)$ versus Perturbative & PDF Uncertainty

reset

PDF at 90% conf.

α_s variation includes δPDF



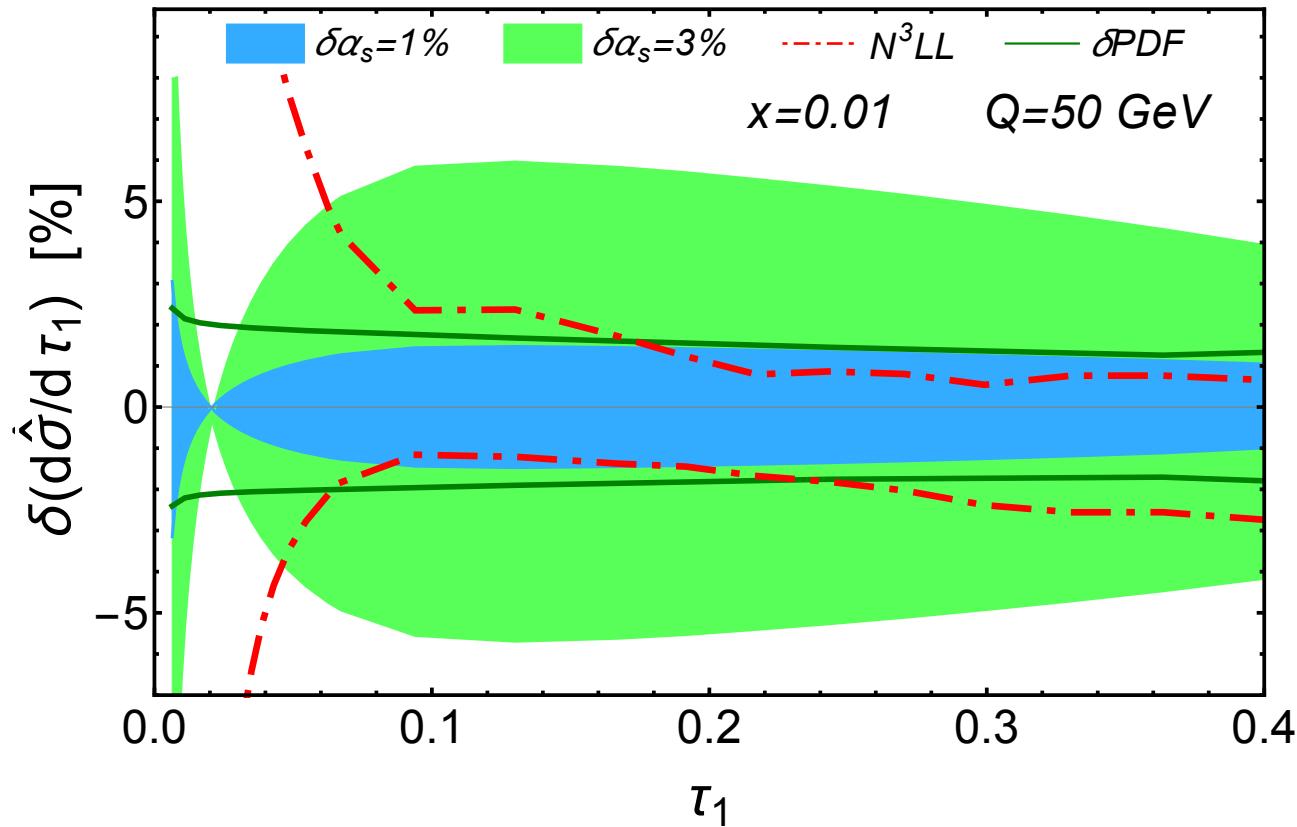
Sensitivity to α_s and PDFs

$\alpha_s(m_Z)$ versus Perturbative & PDF Uncertainty

smaller x

PDF at 90% conf.

α_s variation includes δPDF



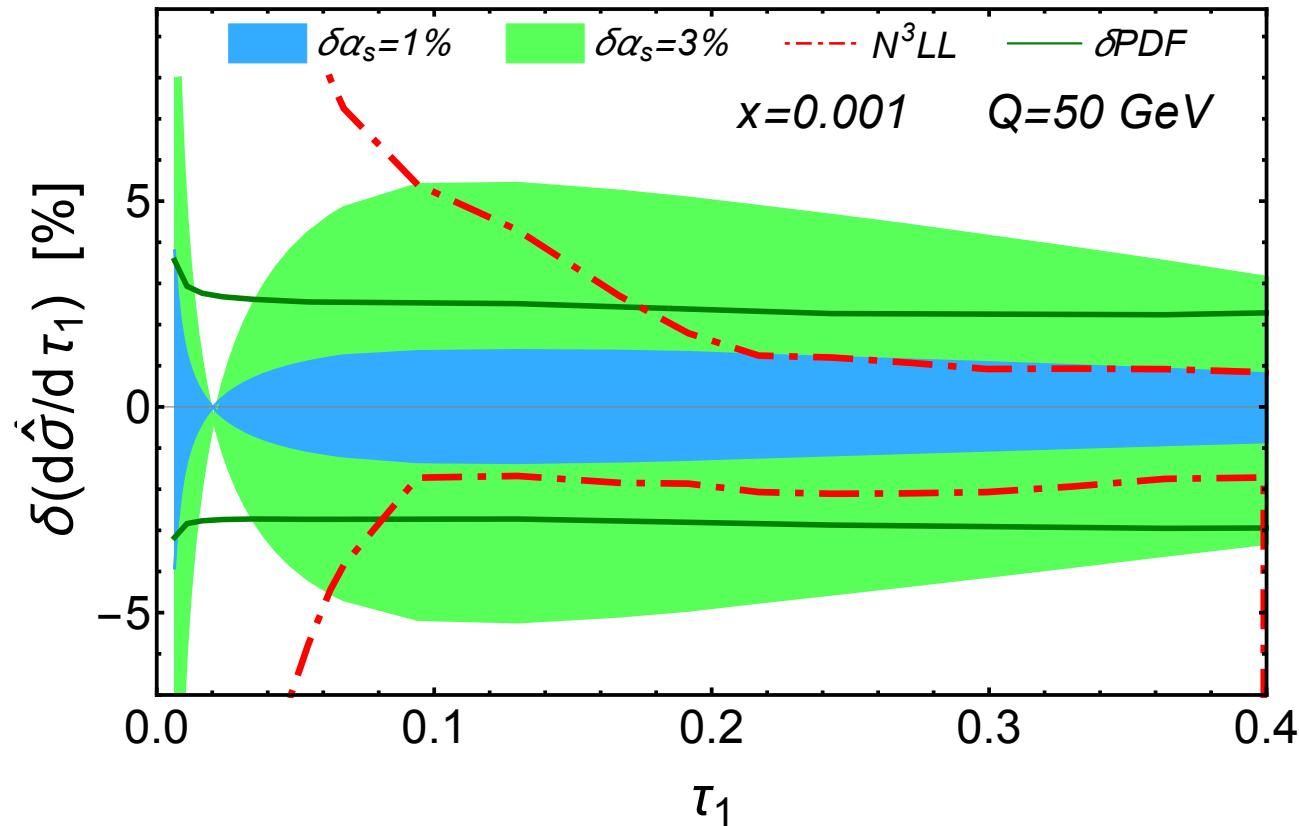
Sensitivity to α_s and PDFs

$\alpha_s(m_Z)$ versus Perturbative & PDF Uncertainty

smaller x

PDF at 90% conf.

α_s variation includes δPDF



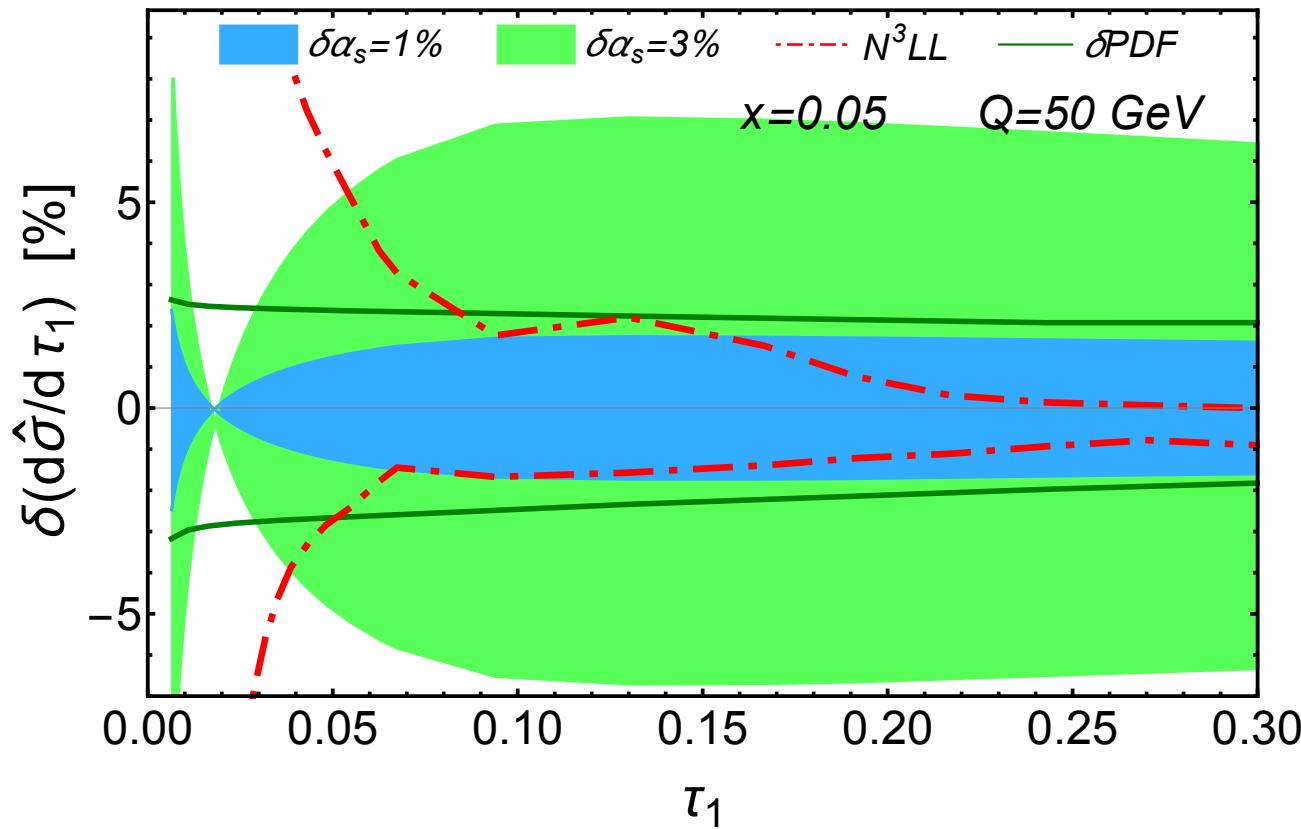
Sensitivity to α_s and PDFs

$\alpha_s(m_Z)$ versus Perturbative & PDF Uncertainty

reset

PDF at 90% conf.

α_s variation includes δPDF



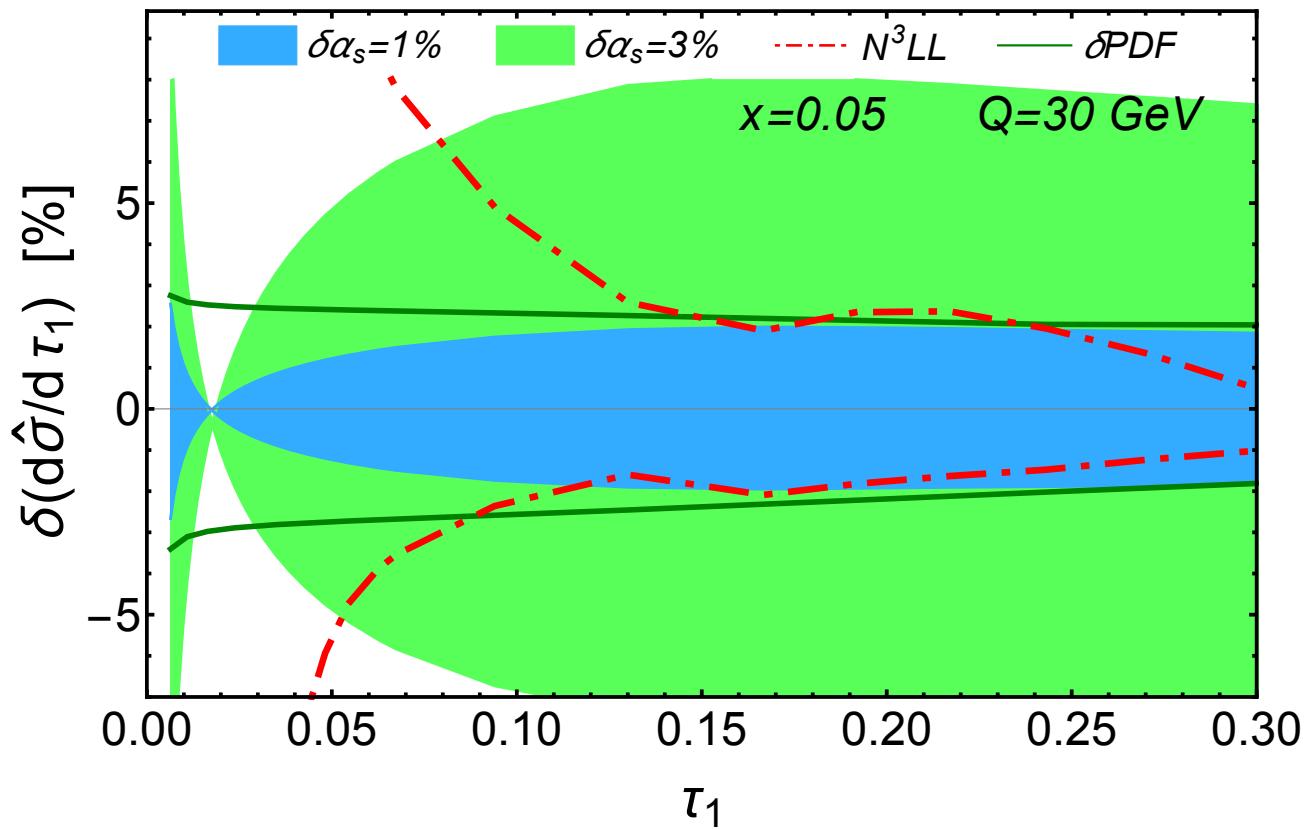
Sensitivity to α_s and PDFs

$\alpha_s(m_Z)$ versus Perturbative & PDF Uncertainty

smaller Q

PDF at 90% conf.

α_s variation includes δPDF



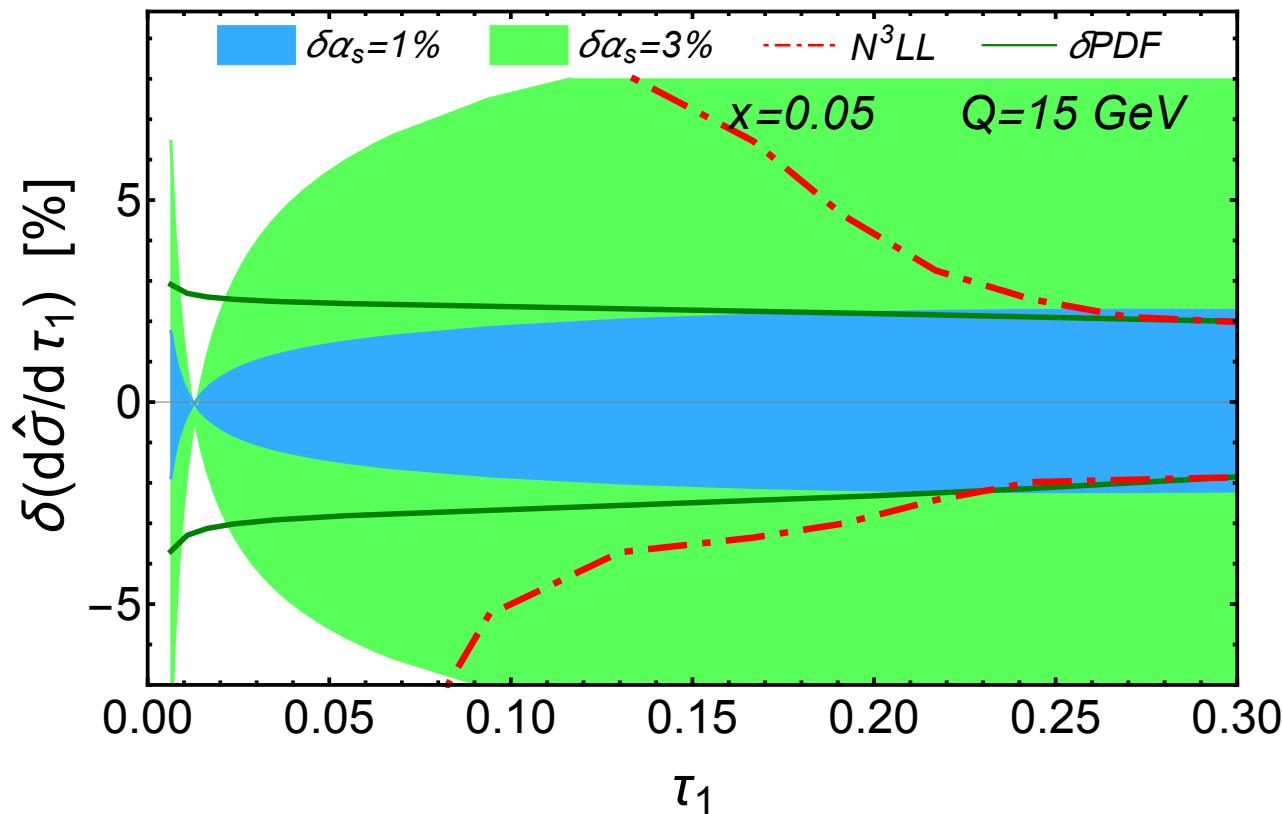
Sensitivity to α_s and PDFs

$\alpha_s(m_Z)$ versus Perturbative & PDF Uncertainty

smaller Q

PDF at 90% conf.

α_s variation includes δPDF



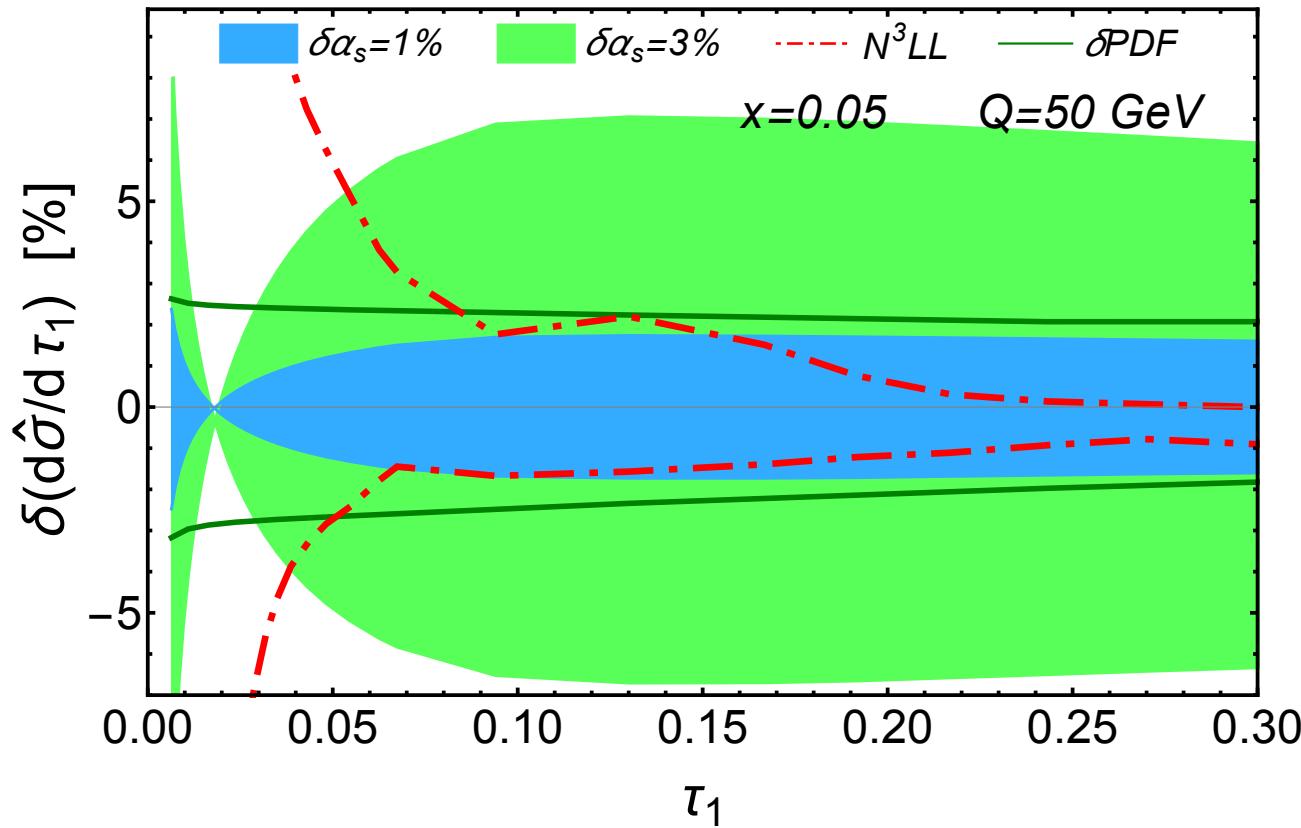
Sensitivity to α_s and PDFs

$\alpha_s(m_Z)$ versus Perturbative & PDF Uncertainty

reset

PDF at 90% conf.

α_s variation includes δPDF



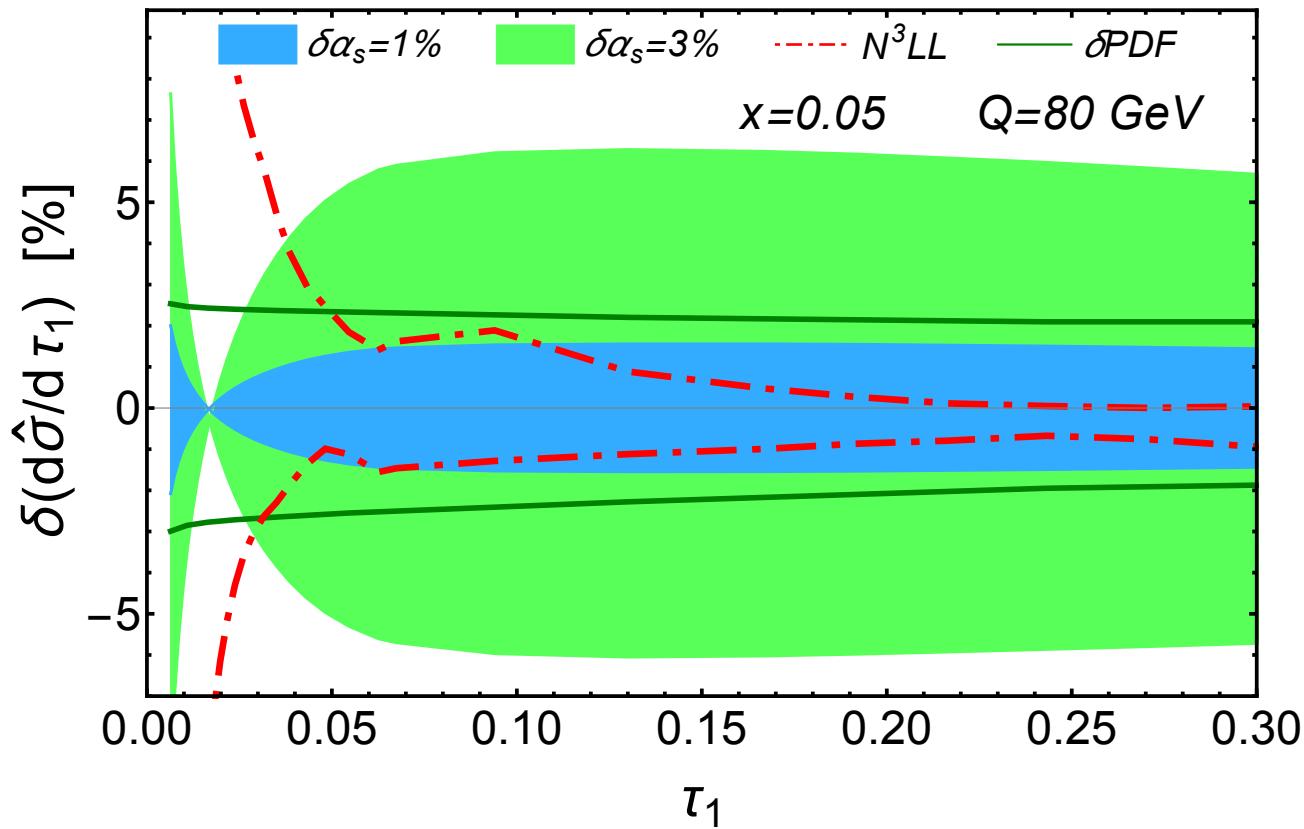
Sensitivity to α_s and PDFs

$\alpha_s(m_Z)$ versus Perturbative & PDF Uncertainty

larger Q

PDF at 90% conf.

α_s variation includes δ PDF



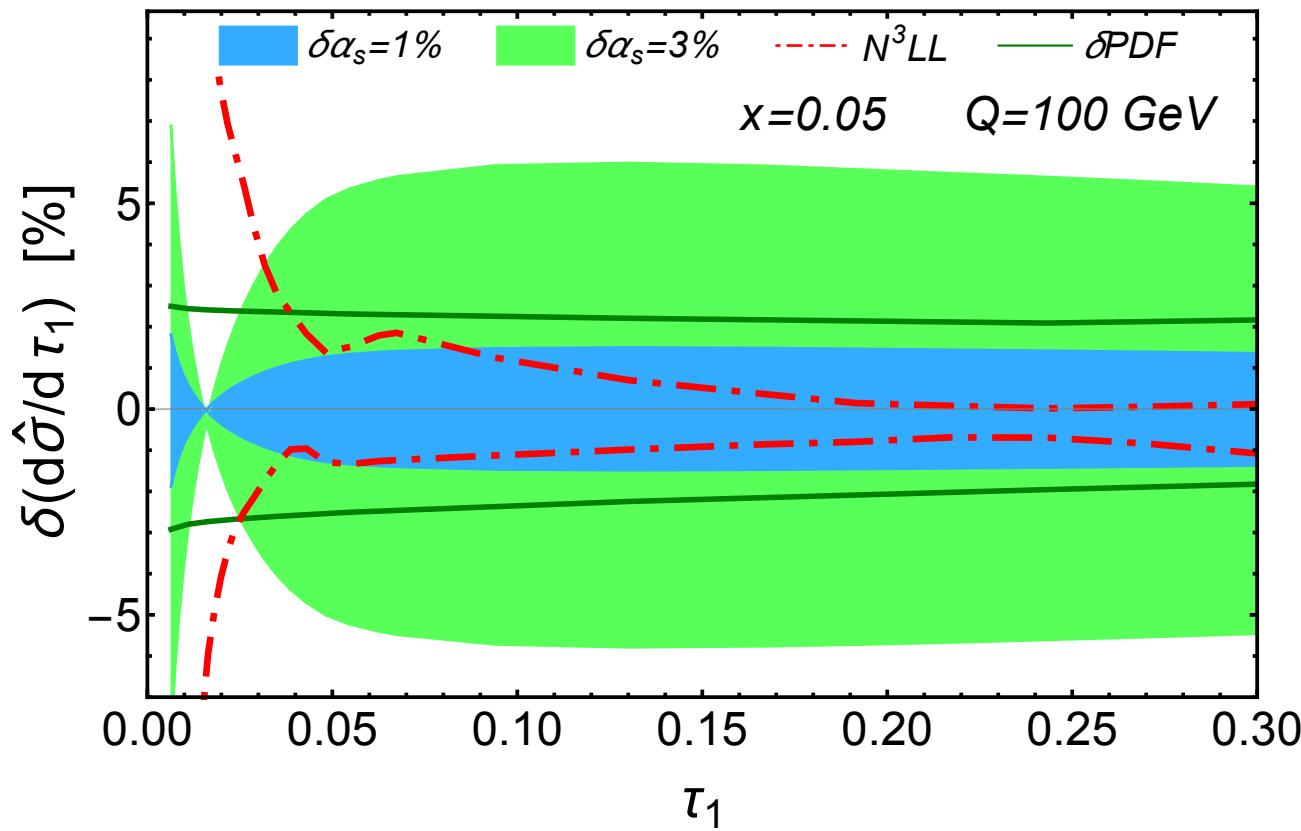
Sensitivity to α_s and PDFs

$\alpha_s(m_Z)$ versus Perturbative & PDF Uncertainty

larger Q

PDF at 90% conf.

α_s variation includes δ PDF



Summary

- Factorization thms for 1-jettiness

$$\sigma \sim H \times B \otimes J \otimes S \quad B = f \otimes \mathcal{I}$$

- N³LL predictions for

- Progress toward N³LL+O(α_s) predictions for

- Accuracy $\delta\alpha_s = 2\%$ or better at $x=0.2\sim0.5$

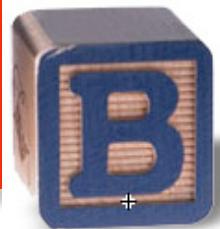
better than $\delta\alpha_s = 4\%$ theory uncertainty in H1 analysis

comparable to MSTW PDF uncertainty

- Need O(α_s^2) nonsingular

Backup

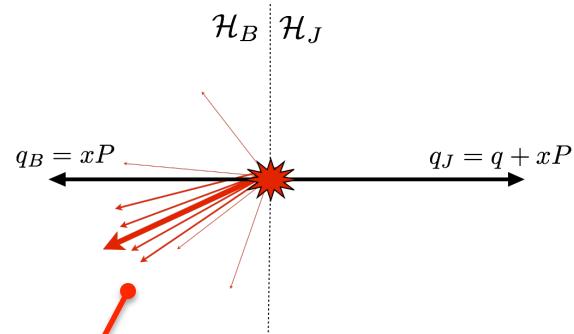
Nonsingular part at $O(\alpha_s)$



DK, Lee, Stewart 2014

$$\frac{d\sigma}{dxdQ^2d\tau_1} = \frac{4\pi\alpha^2}{Q^4} \left[(1 + (1 - y)^2)F_1 + \frac{1 - y}{x}F_L \right]$$

Nonsingular part of F_1



$$B_q = Q_f^2 \frac{\alpha_s C_F}{2\pi} \left[N_1(\tau, x) + N_0(\tau, x) + \int_x^{\frac{1}{1+\tau}} \frac{dz}{z} f_q\left(\frac{x}{z}\right) R^q(\tau, z) \right. \\ \left. + (1 + \tau) f_q(x(1 + \tau)) \Delta_2^q(\tau) + \delta(\tau - 1) \int_x^{1/2} \frac{dz}{z} f_q\left(\frac{x}{z}\right) \Delta_1^q(z) \right]$$

$$N_1(\tau, x) = -4 \frac{\ln \tau}{\tau} \left[(1 + \tau/2) f_q(x(1 + \tau)) - f_q(x) \right]$$

singular term
cancels

enhanced at small x

$$\Delta_1^q(x) = \frac{(1 - 2x)(1 - 4x)}{2(1 - x)} + \frac{1 + x^2}{1 - x} \ln\left(\frac{1 - x}{x}\right)$$

Nonperturbative Effect

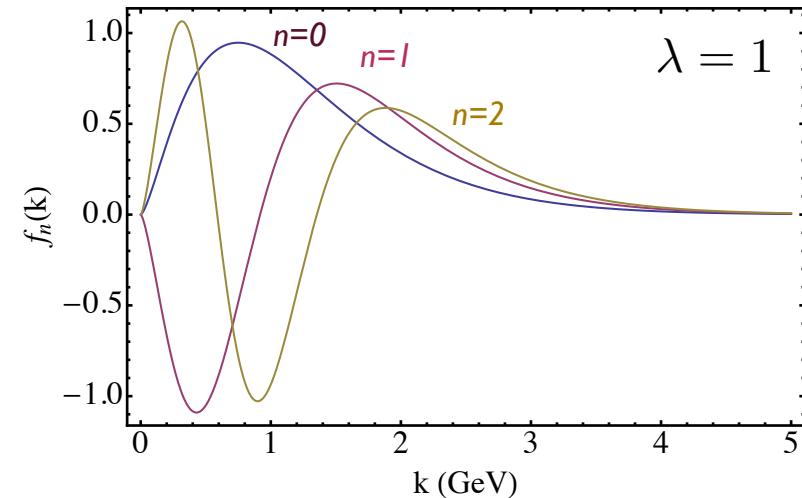
- Estimating nonperturbative part of soft function
- For $\tau \gg \Lambda_{QCD}/Q$
OPE gives power correction with $\mathcal{O}(\Lambda_{QCD}/\tau Q)$ suppression

$$\sigma(\tau) = \sigma_{\text{pert}}(\tau) - \frac{2\Omega}{Q} \frac{d\sigma_{\text{pert}}(\tau)}{d\tau} \approx \sigma_{\text{pert}}(\tau - 2\Omega/Q)$$

- $\Omega \sim \Lambda_{QCD}$: nonperturbative matrix element
- For $\tau \geq \Lambda_{QCD}/Q$
significant nonperturbative effect
convolving shape function
consistent with power correction

$$\sigma(\tau) = \int dk \sigma_{\text{pert}}(\tau - k/Q) F(k)$$

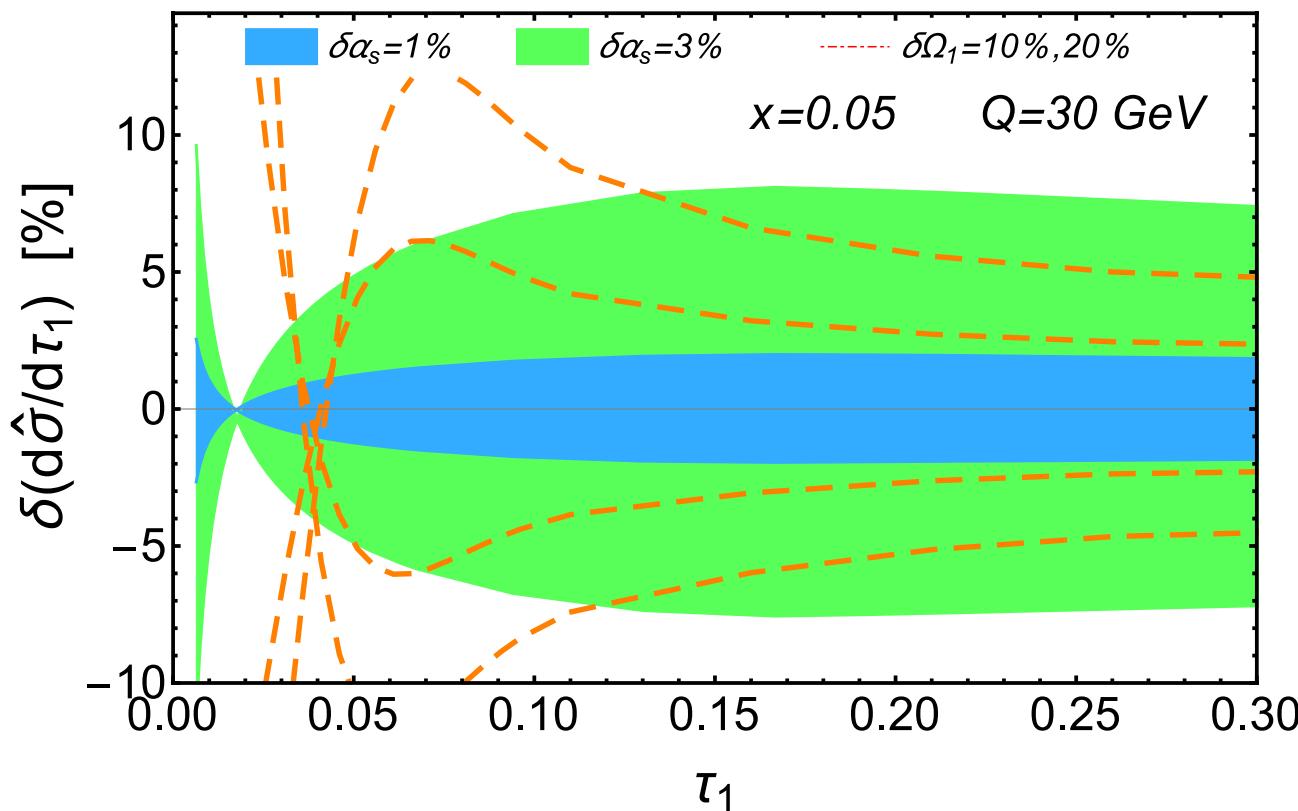
$$\rightarrow \sigma_{\text{pert}}(\tau) - \left(\int dk \frac{k}{Q} F(k) \right) \frac{d\sigma_{\text{pert}}(\tau)}{d\tau}$$



$$F(k) = \frac{1}{\lambda} \left[\sum_{n=0}^N c_n f_n \left(\frac{k}{\lambda} \right) \right]^2$$

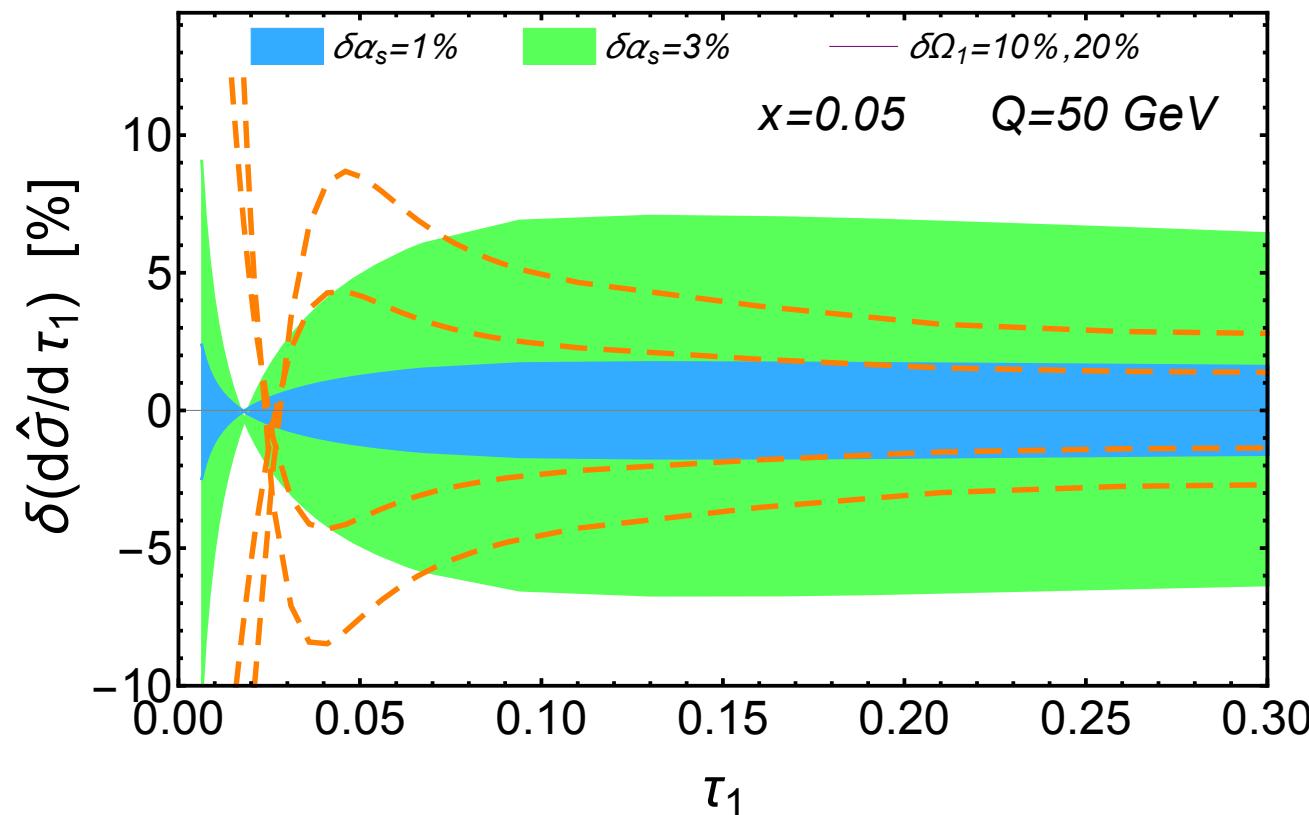
Sensitivity to $\alpha_s(m_Z)$, Ω_1 , and PDFs

Degeneracy between $\alpha_s(m_Z)$ and Ω_1 broken by Q



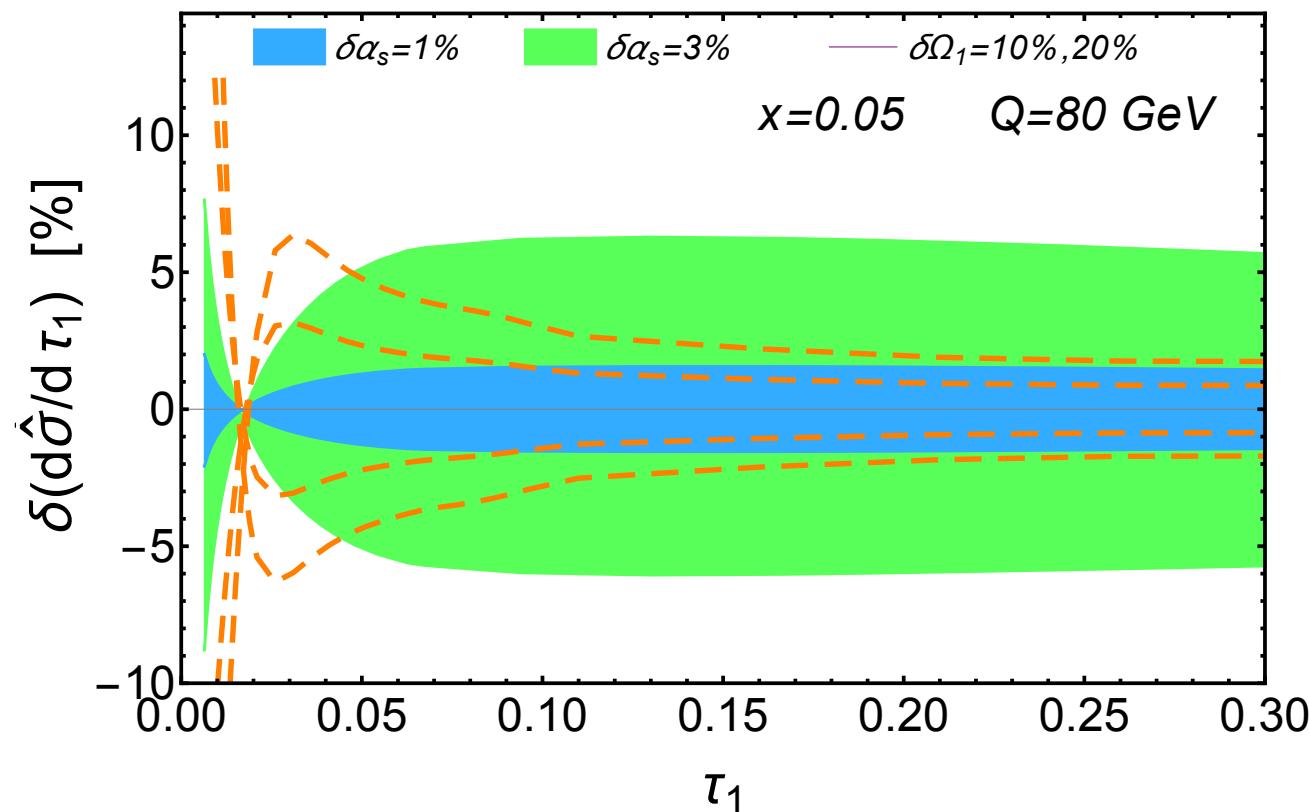
Sensitivity to $\alpha_s(m_Z)$, Ω_1 , and PDFs

Degeneracy between $\alpha_s(m_Z)$ and Ω_1 broken by Q



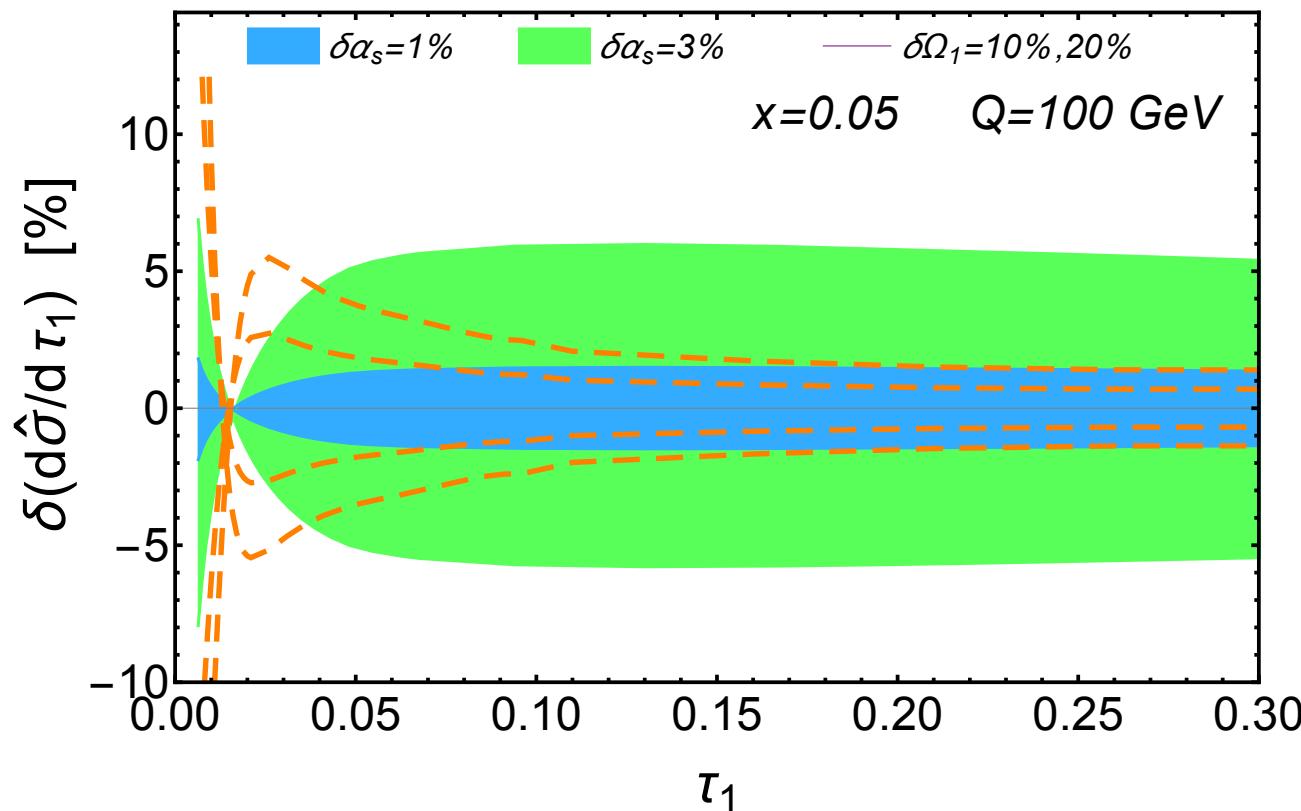
Sensitivity to $\alpha_s(m_Z)$, Ω_1 , and PDFs

Degeneracy between $\alpha_s(m_Z)$ and Ω_1 broken by Q



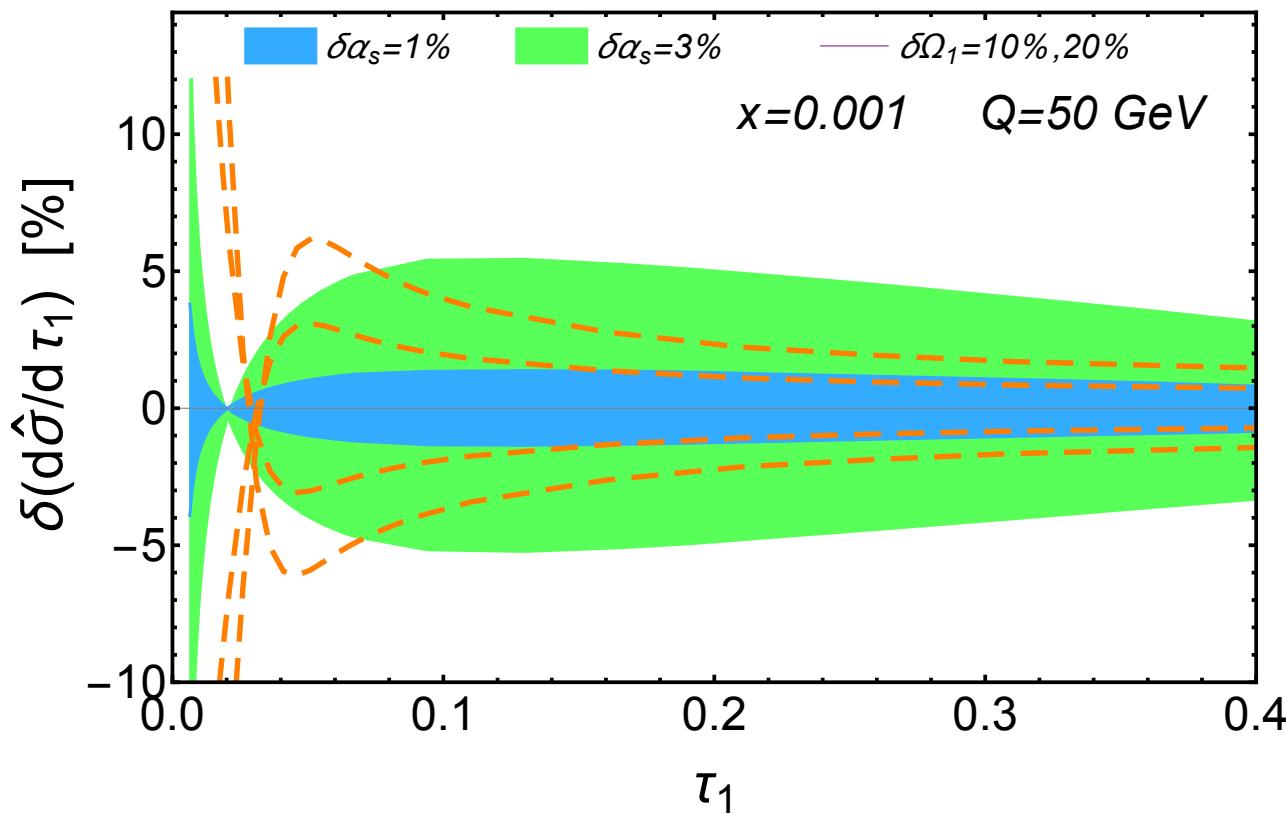
Sensitivity to $\alpha_s(m_Z)$, Ω_1 , and PDFs

Degeneracy between $\alpha_s(m_Z)$ and Ω_1 broken by Q



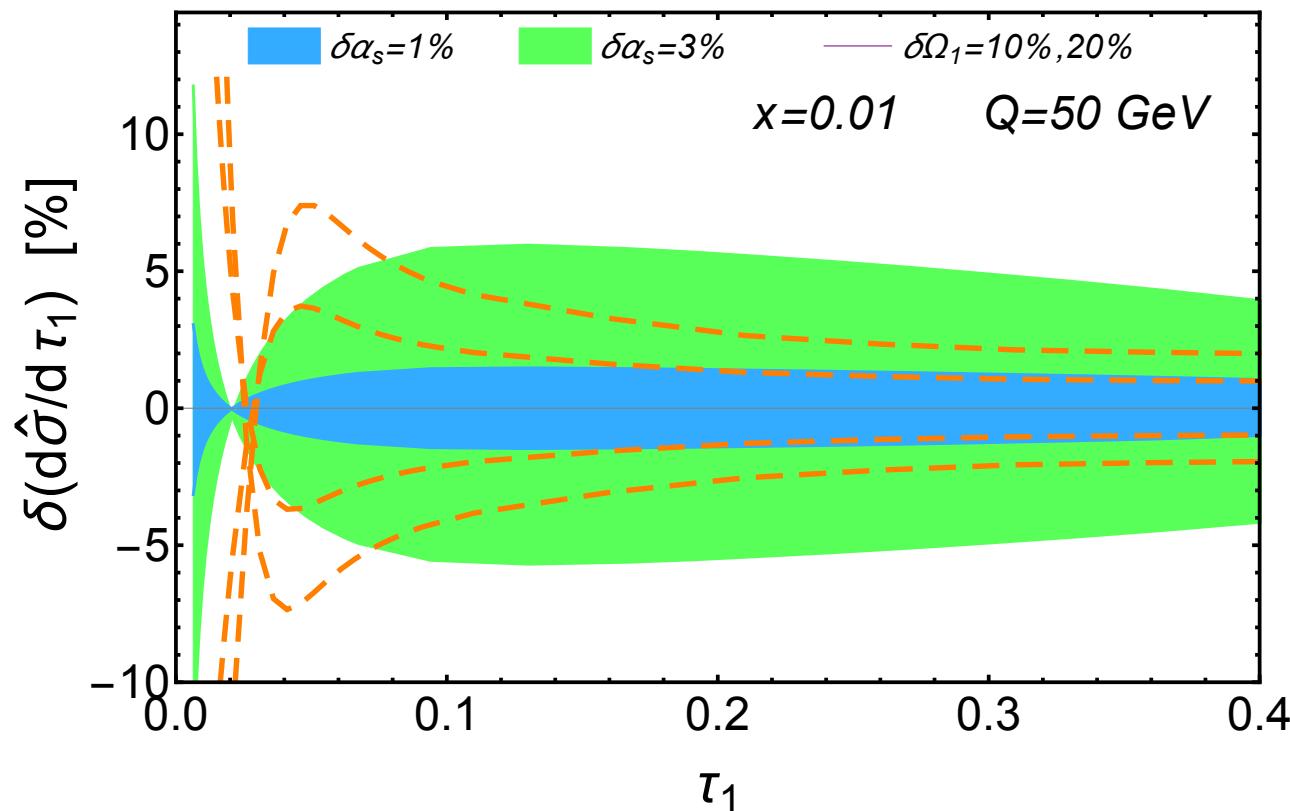
Sensitivity to $\alpha_s(m_Z)$, Ω_1 , and PDFs

Degeneracy between $\alpha_s(m_Z)$ and Ω_1 broken by Q
not by x



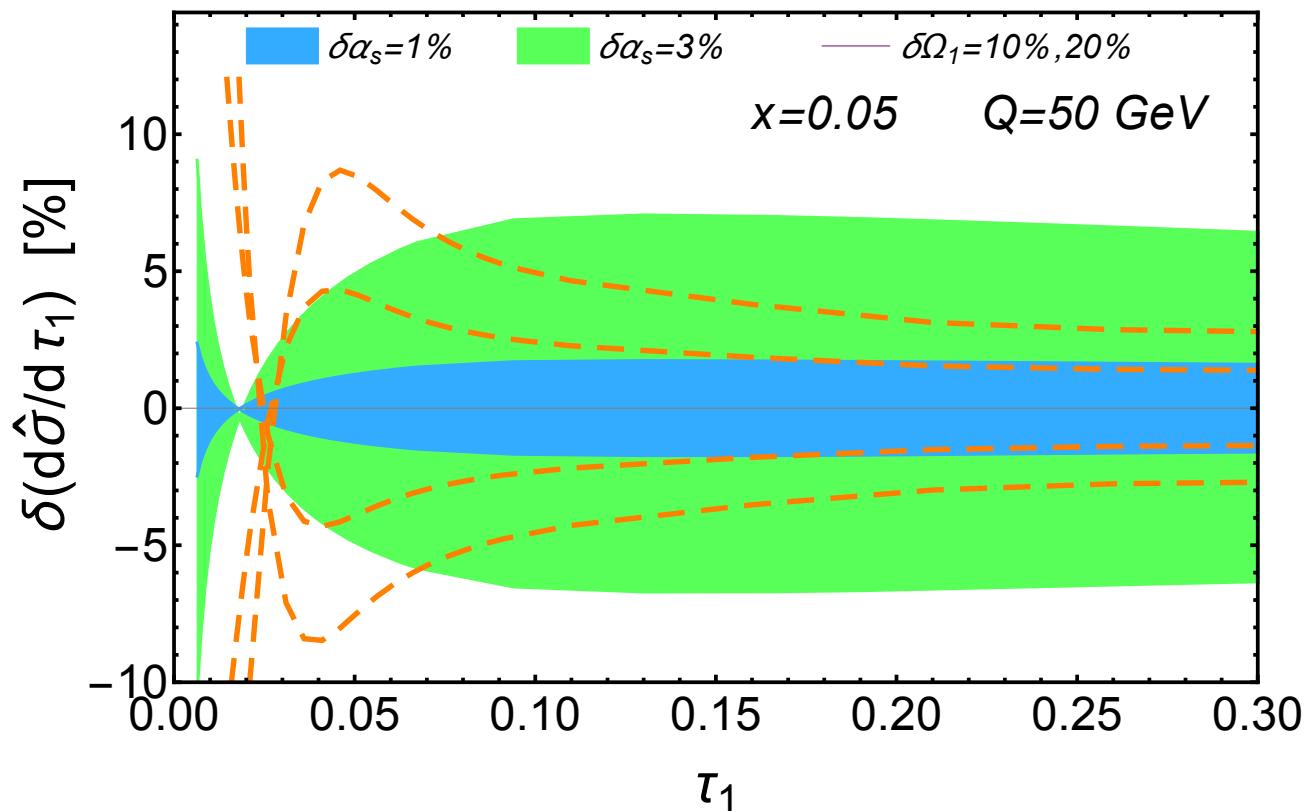
Sensitivity to $\alpha_s(m_Z)$, Ω_1 , and PDFs

Degeneracy between $\alpha_s(m_Z)$ and Ω_1 broken by Q
not by x



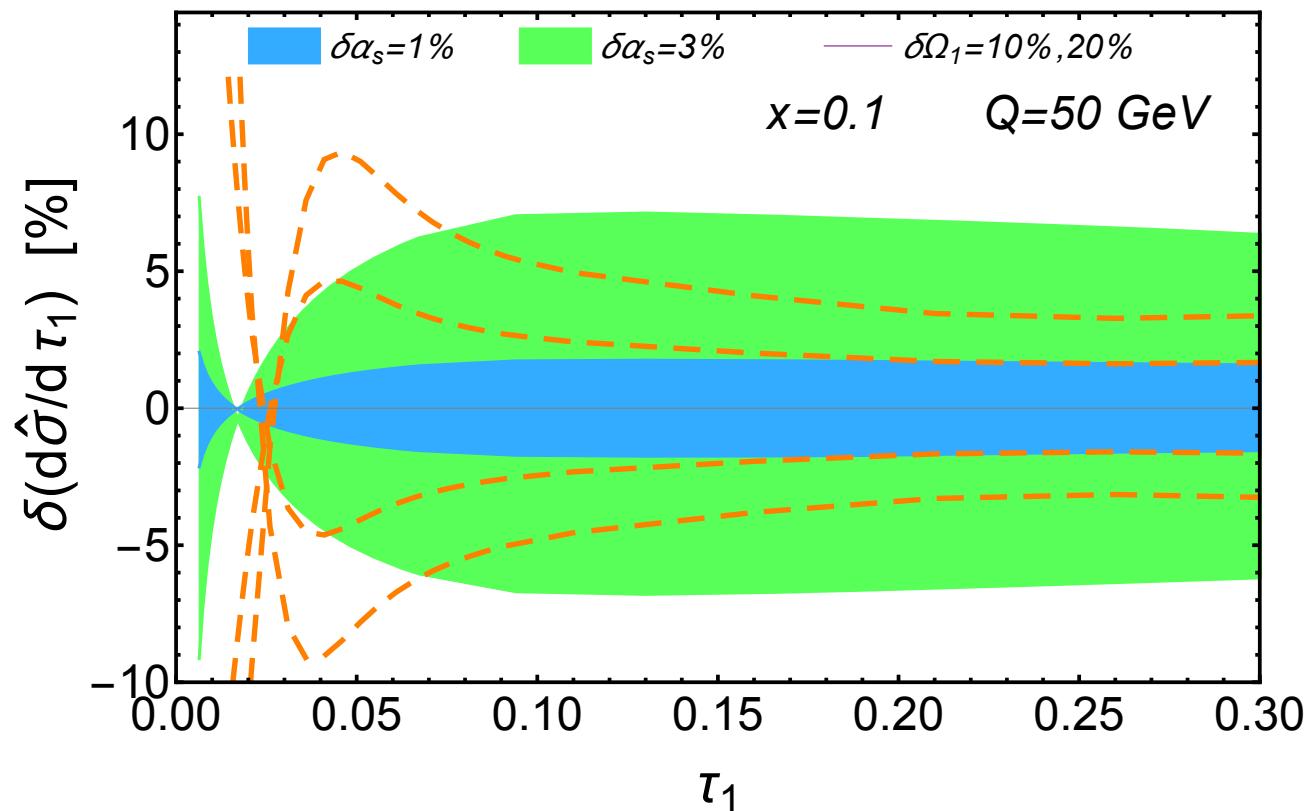
Sensitivity to $\alpha_s(m_Z)$, Ω_1 , and PDFs

Degeneracy between $\alpha_s(m_Z)$ and Ω_1 broken by Q
not by x



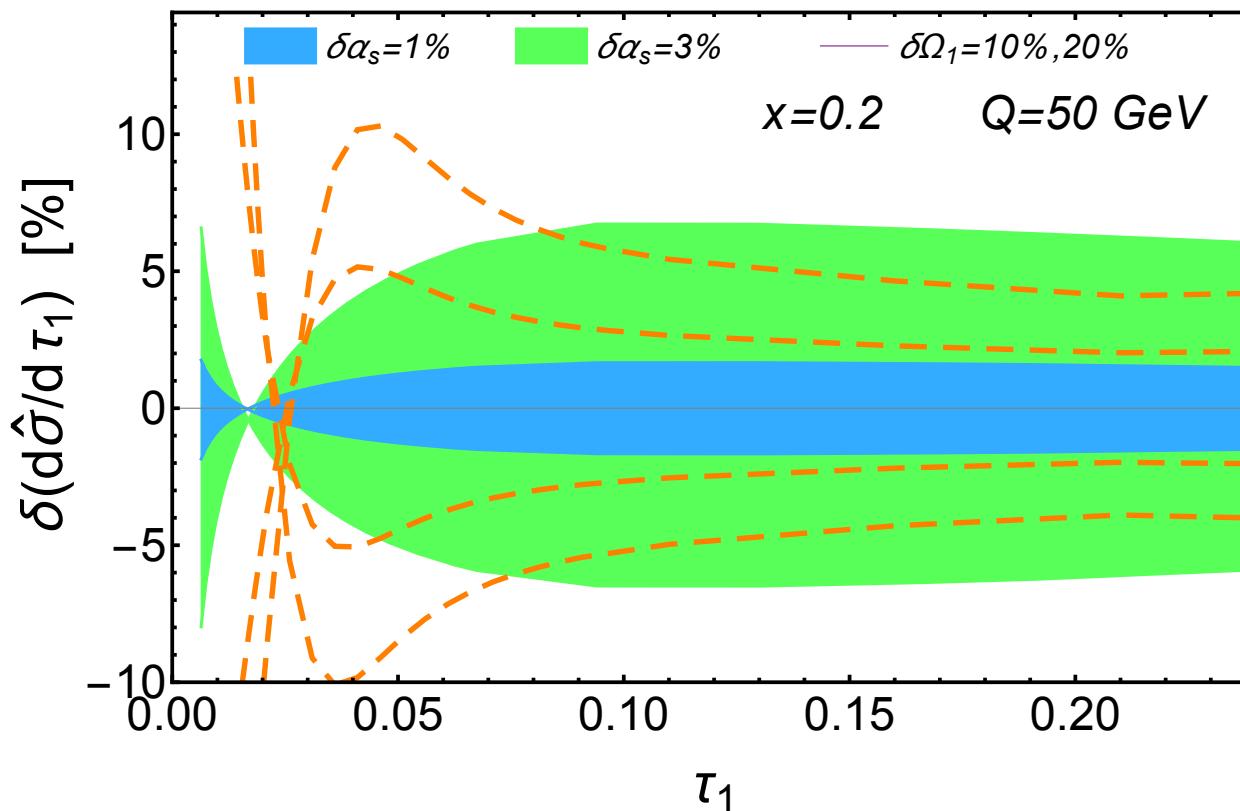
Sensitivity to $\alpha_s(m_Z)$, Ω_1 , and PDFs

Degeneracy between $\alpha_s(m_Z)$ and Ω_1 broken by Q
not by x

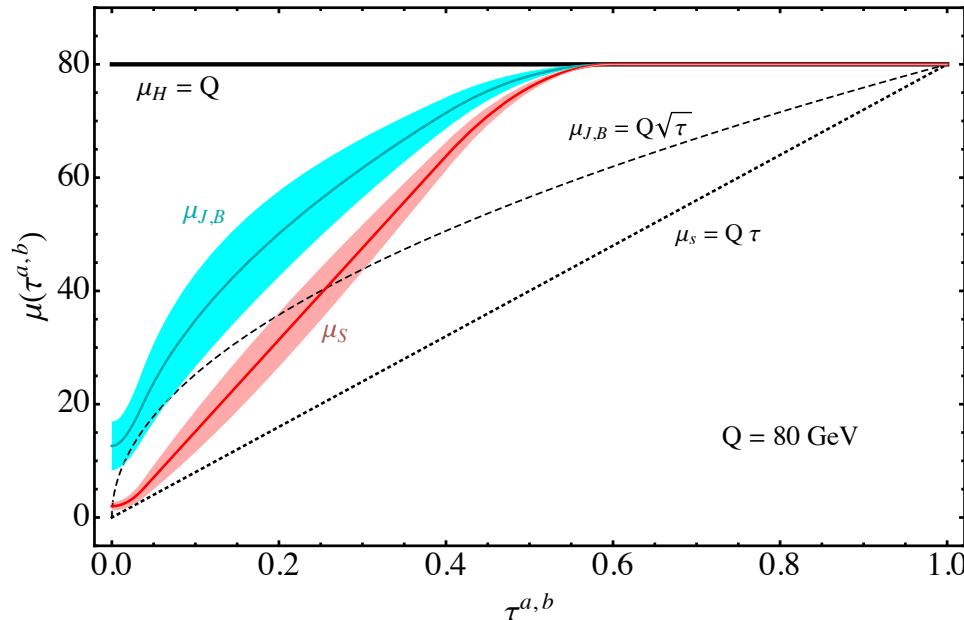


Sensitivity to $\alpha_s(m_Z)$, Ω_1 , and PDFs

Degeneracy between $\alpha_s(m_Z)$ and Ω_1 broken by Q
not by x



Choice of scales

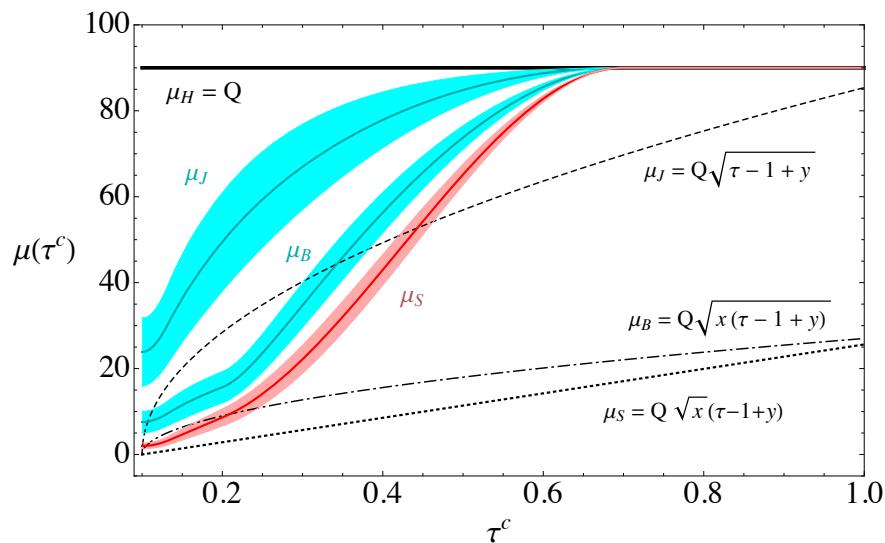


- For $\Lambda_{QCD} \ll \tau \ll 1$

$$\mu_H = Q \quad \mu_{B,J} = \sqrt{\tau}Q$$

$$\mu_S = \tau Q$$
- For $\tau \sim \Lambda_{QCD}/Q$
 significant nonperturbative effect
 soft scale freezing at $\mu_S \sim \Lambda_{QCD}$

$$\mu_{B,J} \sim \sqrt{\Lambda_{QCD}Q}$$



- For $\tau \sim 1$
 no hierarchy in scales
 no large logs

$$\mu_H \sim \mu_{B,J} \sim \mu_S \sim Q$$

Resummation and RGE

- Fourier transformation

y : conjugate variable of τ_1

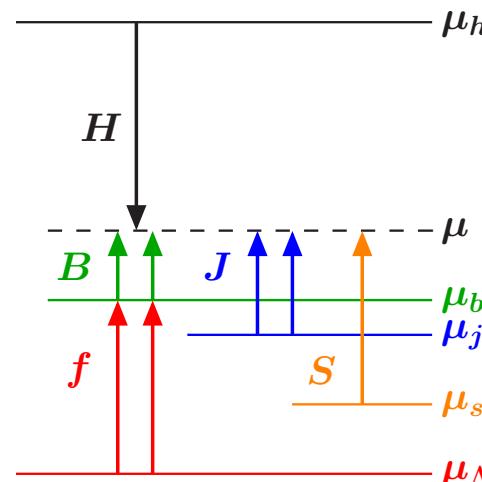
$$\frac{d\tilde{\sigma}}{dy} = \int d\tau_1 e^{-iy\tau_1} \frac{d\sigma}{d\tau_1} = H(\mu) \tilde{B}_q(y, x, \mu) \tilde{J}_q(y, \mu) \tilde{S}(y, \mu)$$

$$\ln \frac{d\tilde{\sigma}}{dy} = L \sum_{k=1}^{\infty} (\alpha_s L)^k + \sum_{k=1}^{\infty} (\alpha_s L)^k + \alpha_s \sum_{k=0}^{\infty} (\alpha_s L)^k + \dots$$

$L = \log(iy)$

LL
 NLL
 $NNLL$

- Resumming large logs
 - No large logs in each function at its natural scale μ_i
 - RG evolution* from μ_i to common scale μ



missing particles in forward region

$$\eta = -\ln(\tan \theta/2)$$

- Proton remnants and particles moving very forward region out of detector coverage: $0 < \theta < \theta_{\text{cut}}$, $\eta > \eta_{\text{cut}}$

- H1: $\theta_{\text{cut}} = 4^\circ (0.7^\circ)$ and $\eta_{\text{cut}} = 3.4 (5.1)$ for main cal. (PLUG cal.)
- ZEUS: $\theta_{\text{cut}} = 2.2^\circ$ and $\eta_{\text{cut}} = 4.0$ for FCAL

- Boost to CM frame: $\eta^{\text{CM}} = \eta - \Delta\eta$

$$\Delta\eta = \ln \frac{E_p^{\text{lab}}}{E_p^{\text{CM}}} = \ln \frac{920}{157} = 1.8$$

- H1: $\eta_{\text{cut}}^{\text{CM}} = 1.6 (3.3)$, $e^{-\eta_{\text{cut}}^{\text{CM}}} = 0.2 (0.04)$
- ZEUS: $\eta_{\text{cut}}^{\text{CM}} = 2.2$, $e^{-\eta_{\text{cut}}^{\text{CM}}} = 0.1$

Suppression factor!

- Maximum missing measurement: $\tau_{\text{miss}} = \frac{2q_B \cdot p_{\text{miss}}}{Q^2} = \frac{m_T}{Q_B} e^{-\eta}$

- $m_T^{\text{max}} = E_p^{\text{lab}} \sin \theta_{\text{cut}}$

about 64(11) GeV for H1 and 32 GeV for ZEUS

$$Q_B = \sqrt{y/x}Q, xQ$$

Future

- P_T dependent observable for TMDPDF

$$\sigma \sim \textcolor{red}{H} \times \textcolor{green}{B} \otimes \textcolor{blue}{J} \otimes \textcolor{orange}{S} \quad B = \textcolor{green}{f} \otimes \textcolor{green}{I}$$

- Toward multi-jet events in DIS
- Jet substructure: heavy meson, quarkonium in a jet