Status of the software development for SπRIT-TPC

Jung Woo Lee for the $S\pi RIT$ Collaboration

Korean Physical Society Conference 2015 Spring

2015. 04. 22

SπRIT Experiment

Examples of Reaction (Beam + Target)

- ¹³²Sn + ¹²⁴Sn
- ¹²⁴Sn + ¹¹²Sn

Beam

<u>SπRIT-TPC</u>

NEBULA

- Pad plane of TPC gives x,z position information and the electric field in y-direction gives the time (or y position) information of ionized electrons.
- Magnetic field (produced by the SAMURAI magnet) in the y-direction makes it possible to identify particles and the momenta of charged particles.

Examples of Probes

- π⁻/π⁺ ratio
- n/p ratio
- ³H/³He ratio

- One neutron detector layer has 30 scintillator bars with dimension, 12 cm × 12 cm × 180 cm.
- Array of scintillator is placed after filtering the charged particles by magnet.

sensitive to

symmetry energy!

General Information

<u>SπRIT-TPC</u>

- Size (mm) : 966.1 × 510.1 × 1446.4
- Magnetic Field : 0.5 Tesla (+y)
- Electric Field : 131 V/cm (-y)
- Gas : P10(Ar 90% + CH₄ 10%) at 1 atm
- High voltage wire amplification.

FairSoft

- All the necessary basic packages are collected.
- Included packages :
 - GEANT3, GEANT4, ROOT, VMC, etc.
 - GENFIT2 packages added for SπRITROOT.

FairRoot

• A framework containing base classes for running simulation, reconstruction and analysis.

<u>SπRITROOT</u>

- A framework containing specific modules for SπRIT experiment on top of FairRoot.
- Composed of **task-based modules**, geometry and steering macros.
- Github is used for repository(private).

Task-Based Modules

- Easy to turn on and off.
- Easy to debug and maintain.

Schematics of SπRITROOT

Monte-Carlo Generation

Transportation

- Geant4
- Geant3

Event Generators

- UrQMD
- PHITS
- PBUU

- MC Hit
 - position
 - energy loss
 - time

Digitization

- position _
- energy loss _
- time

Electric

Field

- STMCPoint gives position, time and energy loss.
- Using energy loss and mean • ionization energy of gas, we can calculate the number of created electrons.
- Through the digitization process, electrons are converted into pad signals.

Digitization - Drift Task

Using the diffusion constants
obtained by Garfield, we calculate 1)
drift time from MC-hit to ground
wire plane and 2) diffused position
in xz-plane when electron reaches
ground wire plane.

e

I

(e⁻)

Electric

Field

Digitization - Drift Task

Digitization - Pad Response

Pad response function describes the induced charge by the avalanche electrons. The function is calculated from the Gatti distribution using geometry of wire plane and pad plane.

$$P(\lambda) = \frac{K_1}{K_2\sqrt{K_3}} \left[\arctan\sqrt{K_3} \tanh\left(K_2\left(\lambda + \frac{w}{2h}\right)\right) - \arctan\sqrt{K_3} \tanh\left(K_2\left(\lambda - \frac{w}{2h}\right)\right) \right]$$

10

Digitization - Electronics Task

Experiment data

Average pulse shape from GET electronics is obtained from the experimental data(HIMAC test). The height of pulse shape is proportional to input electron charge.

Simulation process

The input electron charge are distributed along the time bucket. The GET electronics signal is the superposition of responses from several bins for each input group.

Reconstruction

- For particle ID and momentum estimation, we need the reconstruction process.
- The experimental data and the simulation data are produced in the same format so both of them can be used as input to the reconstruction process.
- The reconstruction process converts the pad responses to tracks.

Display of hits from cosmic data

Reconstruction - PSA & Clustering

Reconstruction - PSA & Clustering

Projection of hits in pad plane

Reconstruction - Riemann Tracking (preliminary)

Summary

- We are building up the basic software framework called $S\pi RITROOT$.
- The results from the simulation and test of GET electronics are important input.
- We are actively developing the reconstruction process.

