News on Collectivity in PbPb Collisions at CMS

Dong Ho Moon (Chonnam National University)

For the CMS Collaboration

International Symposium on Multiparticle Dynamics 2016 @ Seogwipo Jeju 29th August, 2016

Introduction CMS Experiment Results Summary

What is flow ?

*** Flow harmonics** $\mathbf{v_n} \quad \frac{dN}{d\phi} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos n(\phi - \Phi_n)$

Dong Ho Moon

What is flow ?

Less particles

What is flow ?

Less particles

Low p_T Flow

v₂: Collectivity (hydrodymics)
v₃: Geometrical fluctuations

★ Flow harmonics $\mathbf{v}_n \quad \frac{dN}{d\phi} \propto 1 + 2 \sum_{n=1}^{\infty} v_n \cos n(\phi - \Phi_n)$ ★ Good agreements with other experiments

Path-length dependence (energy loss)

High p_T Flow

Path-length dependence (energy loss), R_{AA} (average energy loss)

CMS Detector

2015 Data Taking

✤ 2015 PbPb Run at LHC

- Collision energy : 5.02 TeV
- Integrated luminosity : 404 μb⁻¹
- Minimum bias (p_T < 14 GeV/c)

***** Trigger : high p_T track trigger

- $|\eta| < 1.0, 14 < p_T < 100 \text{ GeV/c}$

Flow harmonics v_n in PbPb - Scalar Product Method

Scalar Product Method

*** Q**-vector for nth harmonics

***** v_n measured from scalar product

$$Q_n = \sum_j w_j e^{in\phi_j}$$

$$v_n \{ SP \} = - \langle Q_n \cdot Q_{nA}^* \rangle$$

R

13

Applied large η gap (|Δη|>3.0)

Scalar Product Method

*** Q**-vector for nth harmonics

v_n measured from scalar product

$$Q_n = \sum_j w_j e^{in\phi_j}$$

$$v_{n} \{ SP \} = \frac{\left\langle Q_{n} \cdot Q_{nA}^{*} \right\rangle}{\sqrt{\frac{\left\langle Q_{nA} \cdot Q_{nB}^{*} \right\rangle \left\langle Q_{nA} \cdot Q_{nC}^{*} \right\rangle}{\left\langle Q_{nB} \cdot Q_{nC}^{*} \right\rangle}}}$$

Applied large η gap (|Δη|>3.0)
Non-ambiguous measure of RMS v_n

Two sub event method PRC 87 (2013) 044907

Results : v_2 {SP} at Low p_T reigon

v₂{SP} in low p_T increase from most-central to mid-central.
 v₂{SP} increase with p_T.
 v₂{SP} peak at ~3 GeV/c, decrease while increasing p_T.

Dong Ho Moon

Results : v_2 {SP} extended to High p_T

PAS HIN-15-014

v₂{SP} measured up to 100 GeV/c at first time.
v₂{SP} remains positive at very high p_T.

Dong Ho Moon

Results : v_2 {SP} vs v_3 {SP} at High p_T

★ v₃{SP} measured up to 100 GeV/c at first time.
★ v₃{SP} doesn't depend on centrality.
★ v₃{SP} ~ 0 consistently for p_T > 20 GeV/c.

Results : v_2 {SP} vs v_3 {SP} at Low p_T

✤ v₃{SP} has little dependency on centrality in low p_T region.

ISMD 2016 @ Seogwipo in Jeju

18

Flow harmonics v_n in PbPb - Cumulant Method

PRC 83 (2011) 044913

• Reference particles in $|\eta| < 2.4, 1 < p_T < 5$ GeV/c

C_n is in BackUp

 $\begin{array}{lll} \langle \langle 2 \rangle \rangle &\equiv \left\langle \left\langle e^{in(\phi_1 - \phi_2)} \right\rangle \right\rangle & \nu_n \{4\} = \sqrt[4]{-c_n \{4\}} \\ \langle \langle 4 \rangle \rangle &\equiv \left\langle \left\langle e^{in(\phi_1 + \phi_2 - \phi_3 - \phi_4)} \right\rangle \right\rangle & \nu_n \{6\} = \sqrt[6]{c_n \{6\} / 4} \\ \langle \langle 6 \rangle \rangle &\equiv \left\langle \left\langle e^{in(\phi_1 + \phi_2 + \phi_3 - \phi_4 - \phi_5 - \phi_6)} \right\rangle \right\rangle & \nu_n \{8\} = \sqrt[6]{-c_n \{8\} / 33} \\ \end{array}$

- ★ Reference particles in |η| < 2.4, $1 < p_T < 5$ GeV/c
- Particle of Interest (POI): $|\eta| < 1.0$

$$v_n\{4\}(p_T) = -d_n\{4\} / (-c_n\{4\})^{3/4}$$
$$v_n\{6\}(p_T) = \frac{d_n\{6\}}{4} / \left(\frac{c_n\{6\}}{4}\right)^{5/6}$$
$$v_n\{8\}(p_T) = \frac{-d_n\{8\}}{33} / \left(\frac{-c_n\{8\}}{33}\right)^{7/8}$$

Cumulant Method

• No need Event plane

21

- Remove non-flow contribution
- ➤ d_n{m}: 1 particle from POI within given p_T range, m-1 particles from Ref.

PRC 83 (2011) 044913

Results : v_2 {SP} and Cumulant at Low p_T

v₂{SP} in low p_T slightly higher than v₂{4, 6, 8}.
Expected in hydrodynamics.

$$v_2{2} = v_2 + \sigma^2/(2v_2)$$

 $v_2{4,6,8} = v_2 - \sigma^2/(2v_2)$

Results : v_2 {SP} and Cumulant at High p_T

Multi-particle v₂{4,6,8} measured up to 100 GeV/c at first time.

- ✤ Multi-particle v₂{4,6,8} are good agreement in high p_T region.
- Indicate collective nature of high p_T particles.
 (Maybe low and high p_T v₂ have same origin ?)

23

Results : v_2 {SP} and Cumulant at Low p_T

For further investigation, let's have a correlation between the low p_T (dominated by hydrodynamics) and high p_T (dominated by jet quenching) v₂.

Low & High $p_T v_2$

Low p_T : 1.0 < p_T < 1.25 GeV/c

PAS HIN-15-014

- ✤ High p_T v₂ is strongly correlated to low p_T v₂.
- ***** Hint of same origin of the correlations

Low & High $p_T v_2$

Low $p_T : 1.0 < p_T < 1.25 \text{ GeV/c}$

PAS HIN-15-014

26

- ✤ High p_T v₂ is strongly correlated to low p_T v₂.
- Hint of same origin of the correlations
- **Slope decrease while increasing** p_T **.**

Summary

- ★ Measured v_2 {SP}, v_3 {SP} and v_2 {4,6,8} up to p_T of 100 GeVc in PbPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV for the FIRST time.
- ✤ Non-zero v₂ still remain at very high p_T region.
- ✤ Multi-particle v₂{4,6,8} show collective nature of high p_T particles.
- Observed zero v_3 {SP} in $p_T > 20$ GeV/c.
- ★ High p_T v₂ is strongly correlated with low p_T v₂.
 ✓ Suggestion of same origin for the correlation.
- For more detail information
 - ✓ <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN</u>

THANK YOU!!!

Scalar Product Method

*** Q**-vector for nth harmonics

***** v_n measured from scalar product

$$Q_n = \sum_j w_j e^{in\phi_j}$$

$$v_{n} \{ SP \} = \frac{\left\langle Q_{n} \cdot Q_{nA}^{*} \right\rangle}{\sqrt{\frac{\left\langle Q_{nA} \cdot Q_{nB}^{*} \right\rangle \left\langle Q_{nA} \cdot Q_{nC}^{*} \right\rangle}{\left\langle Q_{nB} \cdot Q_{nC}^{*} \right\rangle}}}$$

Applied large η gap (|Δη|>3.0)
Non-ambiguous measure of RMS v_n

Two sub event method PRC 87 (2013) 044907

PRC 83 (2011) 044913

♦ Reference particles in $|\eta| < 2.4$, $1 < p_T < 5$ GeV/c

PRC 83 (2011) 044913

32

♦ Reference particles in $|\eta| < 2.4$, $1 < p_T < 5$ GeV/c

$$\begin{array}{lll} c_n\{4\} &=& \langle\langle 4\rangle\rangle - 2 \cdot \langle\langle 2\rangle\rangle^2, \\ c_n\{6\} &=& \langle\langle 6\rangle\rangle - 9 \cdot \langle\langle 4\rangle\rangle\langle\langle 2\rangle\rangle + 12 \cdot \langle\langle 2\rangle\rangle^3, \\ c_n\{8\} &=& \langle\langle 8\rangle\rangle - 16 \cdot \langle\langle 6\rangle\rangle\langle\langle 2\rangle\rangle - 18 \cdot \langle\langle 4\rangle\rangle^2 + 144 \cdot \langle\langle 4\rangle\rangle\langle\langle 2\rangle\rangle^2 - 144\langle\langle 2\rangle\rangle^4. \end{array}$$

PRC 83 (2011) 044913

33

♦ Reference particles in $|\eta| < 2.4$, $1 < p_T < 5$ GeV/c

$$v_{n}\{4\}(p_{T}) = -d_{n}\{4\}/(-c_{n}\{4\})^{3/4}$$

$$v_{n}\{6\}(p_{T}) = \frac{d_{n}\{6\}}{4} / \left(\frac{c_{n}\{6\}}{4}\right)^{5/6}$$

$$v_{n}\{8\}(p_{T}) = \frac{-d_{n}\{8\}}{33} / \left(\frac{-c_{n}\{8\}}{33}\right)^{7/8}$$

$$d_{n}\{m\}: 1 \text{ particle from POI within given } p_{T} \text{ range, m-1 particles from Ref.}$$

Results : v_2 {SP} and Cumulant at Low p_T

v₂{SP} in low p_T slightly higher than v₂{4, 6, 8}.
But expected in hydrodynamics.
v₂{2} = v₂ + q

$$v_2{2} = v_2 + \sigma^2/(2v_2)$$

 $v_2{4,6,8} = v_2 - \sigma^2/(2v_2)$

Systematics

Table 1: Sources of systematic uncertainties and range of uncertainties in percent.

Source	$v_2{SP}$	$v_3{SP}$	$v_2{4}$	$v_2{6}$	$v_2\{8\}$
Vertex Position	< 1	< 1	< 1	< 1	< 1
Tracking Efficiency	< 1	< 1	< 1	< 1	< 1
Track Quality Cuts	2 - 50	2 - 50	2-12	2-12	2-12
Non-flow contribution	1 - 50	1 - 100	-	-	-

Theory Comparison

Figure 2: The v_2 results from SP and EP method as a function of p_T in seven centrality ranges of PbPb collisions at $\sqrt{s_{_{NN}}} = 5.02$ TeV and 2.76 TeV respectively. Shaded boxes represent systematic uncertainties and dashed lines are predictions from CUJET3.0 model [26, 27].

CUJET3.0 model

Dong Ho Moon

36