Neutron Star Mass and Radius Constraint from X-ray Burst in LMXBs

Myungkuk KIM, Department of Physics Pusan National University

Collaborated with Young-Min KIM, Chang-Hwan LEE (PNU), Kyujin KWAK(UNIST)

XLVI International Symposium on Multiparticle Dynamics (ISMD2016)

X-ray Binaries and X-ray burst

- Occurs on the neutron star surface in LMXBs by nuclear ignition (unstable H or He)
- Energy range ~ 10keV (soft X-ray)
- Maximum luminosity ~ 10³⁸erg/s (Eddington limit)
- recurrence time ~ hours to days
- X-ray softening during decay
- regular or irregular bursts recurrence

4U 1820-30

number of Type I X-ray bursters ~ 84(2007) (of ~160 LMXBs), 2/3 located in the Galactic Bulge

Photospheric Radius Expansion

- In bright bursts, the luminosity L can reach the Eddington limit L_{Edd}
 - Pradiation >> Pgravitation
 - Photospheric layers are lifted off
- During PRE the luminosity is nearly constant(near L_{Edd})
- About 20% shows the evidence of PRE bursts (Galloway et al. 2008)

Expansion stage

'touchdown' stage

Method to estimate Mass and Radius I

'touchdown' point

Method to estimate Mass and Radius II

Quantities	EXO 1756–248	4U 1608–522	4U 1820–30	4U 1746–37	EXO 0748-676
D	6.3 ± 0.6	5.8± 2.0	8.2±0.7	11.05 ± 0.85	7.1± 1.2
$A F_{\mathrm{TD},\infty}$	1.17 ± 0.13 6.25 ± 0.2	3.246 ± 0.024 15.41 ± 0.65	0.9198 ± 0.0186 5.39 ± 0.12	0.109 ± 0.044 0.269 ± 0.057	1.14 ± 0.10 2.25 ± 0.23

D (kpc): distance *A* (km² kpc⁻²): normalised surface area F_{TD} (10⁻⁸ erg cm⁻² s⁻¹): touchdown flux

Previous - Gaussian distribution of F_{TD}, A, and D (observation) uniform distribution of f_c and x (theoritical)
 f_c(=T_{bb}/T_{eff}): 1.3 -1.4,
 x: 0.0 - 0.7

Our work - x dependence (0.1, 0.3, 0.7)
 The accreted material effect

M-R probability distribution I uniform distribution

- mass increases and radius decreases as x increases
- mass (M/M⊙) : 1.24 1.57
 radius (km) : 8.29 10.38

Thank You for your attention