

Measurements of beauty-decay electrons in ALICE at the LHC

Minjung Kim for the ALICE Collaboration Inha University

ISMD 2016 Seogwipo KAL hotel, Jeju Island, South Korea 29 August 2016

Motivation

Heavy guarks in heavy-ion (HI) collisions

- Large masses $(m_q \gg \Lambda_{QCD}) \rightarrow$ produced in the early stages of the HI collision with short formation time ($t_{charm} \sim 1/m_c \sim 0.1 \text{ fm/}c \ll \tau_{QGP} \sim O(10 \text{ fm/}c)$), traverse the medium interacting with its constituents.
- Heavy guarks cannot be destroyed/created in the medium and their interactions with QGP don't change flavour identity
- natural probe of the hot and dense medium created in HI collisions

Open Heavy-flavour in p-Pb and Pb-Pb collisions •

Pb-Pb collisions

- Study the interaction of heavy guarks with the medium via parton energy loss (radiative vs collisional) which depends on :
 - Color charge M. Gyulassy and X.-n. Wang, Nucl. Phys. B420 (1994) 583
 - Parton mass Dokshitzer and Kharzeev, PLB 519 (2001) 199 H. van Hees, V. Greco, and

▶ path length in the medium ^{R. Rapp, Phys. Rev. C 73} (2006) 034913

medium density and temperature

 $\Rightarrow expect: \Delta E_{g} > \Delta E_{u,d,s} > \Delta E_{c} > \Delta E_{b}$

p-Pb collisions

- Control experiment for the Pb-Pb measurements
- Address cold nuclear matter effects
 - Inuclear modification of parton distribution functions
 - \mathbf{k}_{T} broadening
 - energy loss in cold nuclear matter

shadowing: K.J. Eskola et al., JHEP 0904 (2009) 65 , gluon saturation, Color Glass Condensate: H. Fuji & K. Watanabe, NPA 915(2013) 1, I. Vitev at al., PRC 75 (2007) 064906

- Measurement of beauty production in ALICE
 - Measurements of beauty production are done via electrons from semi-leptonic decay of beauty hadrons, thanks to excellent vertexing and impact parameter resolution of Inner tracking system (ITS) and eID capability in ALICE

A. Andronic et al., Eur. Phys. J. C76 no. 3, (2016) 107

Electrons from B Hadron Decay via IP cut method X

1. Charged particle tracks selected fulfilling **track quality** and **eID cuts** (composed by electrons from photon conversion, Dalitz decays, charm hadron decays, beauty hadron decays)

ALI-PREL-76489

ISMD 2016, Jeju

- 2. Beauty hadron has $c\tau \approx 500 \ \mu m$ and hard momentum spectrum, which leads to larger impact parameter of decay electrons than those from background.
 - Electron tracks from beauty hadron decays features broader impact parameter distribution compared to that from background
- 3. Minimum impact parameter cut to increase S/B ratio
- 4. Subtract remaining background(nonHFE and charm hadron decay electrons) based on ALICE measurement
- 5. Correct subtracted electron spectra for acceptance and efficiency

Beauty in the barrel:

Electrons from B Hadron Decay via IP fit method + X

- 1. Charged particle tracks selected fulfilling **track quality** and **eID cuts** (composed by electrons from photon conversion, Dalitz decays, charm hadron decays, beauty hadron decays)
- 2. Beauty hadron has $c\tau \approx 500 \ \mu m$ and hard momentum spectrum, which leads to larger impact parameter of decay electrons than those from background.
 - Electron tracks from beauty hadron decays features broader impact parameter distribution compared to that from background
- 3. Get Impact Parameter distributions of electrons from different sources from MC as template for each p_T bins
- 4. Fit templates of impact parameter distributions of signal and background contributions
- 5. Correct subtracted electron spectra for acceptance and efficiency

Beauty in the barrel:

Nuclear modification factors of b→e

p-Pb √s_{NN}= 5.02 TeV Pb-Pb √s_{NN}= 2.76 TeV • $\mathbf{R}_{pA} = \frac{1}{A} \frac{d\sigma_{pA}/dp_{T}}{d\sigma_{nn}/dp_{T}}$, A: number of nucleons in the nucleus $\mathbf{P}_{AA} = \frac{dN_{AA} / dp_T}{\langle N_{au} \rangle \times dN_{au} / dp_T} , \langle N_{coll} \rangle: \text{ number of binary collisions}$ ► $R_{\text{DA}} \neq 1$: Address possible cold nuclear matter effects ▶ RAA \neq 1 : medium effect at high p_T R_AA $\mathcal{H}_{\mathsf{pPb}}$ Pb-Pb, $\sqrt{s_{\text{NN}}}$ = 2.76 TeV, 0-20% centrality **ALICE** Preliminary 3.5 p-Pb, $\sqrt{s_{_{\rm NN}}}$ = 5.02 TeV, -1.06< $y_{_{\rm CMS}}$ <0.14 \rightarrow b (\rightarrow c) \rightarrow e, |v| < 0.8 3 svst. uncertainty • b (\rightarrow c) \rightarrow e 2.5 nomalization uncertainty svst error 1.5 ormalization uncertainty 2 1.5 0.5 0.5 **ALICE** Preliminary 3 Δ 5 2 3 5 6 *p*_{_} (GeV/*c*) p_ (GeV/c) ALI-PREL-74678 ALI-PREL-76455

- Nuclear modification factor of beauty-decay electrons in p-Pb collisions is compatible with unity within uncertainties
- Suppression of beauty-decay electrons for $p_T > 3 \text{ GeV}/c$ in 0-20% central Pb-Pb collisions
- Suppression measured in Pb-Pb collisions can be due to the parton energy loss in the hot and dense medium
- Results with smaller uncertainties will be published soon

Thanks for your attention!