

Two-particle correlation via bremsstrahlung

Soyeon Cho and Kayoung Park (Supervised by Prof. Jin-Hee Yoon)

2016.08.29, ISMD 2016

Inha University

Specific structure in two-particle angular correlations

This structure is understood through elliptic and higher-order flows for Pb-Pb collisions.

However, flows in small systems?

We try to describe this structure via kinematic interaction between jets and medium

CMS collaboration, Physical Letters B **724**, 213240 (2013) ATLAS collaboration, Physical Review Letters **116**, 172301 (2016)

Energetic jet particles lose their energy while traversing the QGP via...

- Collision
- Radiation
 - Gluon radiation
 - Photon radiation (Bremsstrahlung)

*

1st order diagram for Bremsstrahlung

Bremsstrahlung processes

Two diagrams of γ emission and medium parton scattering might *inerfere* constructively.

$$d\sigma \sim |M_{(a)} + M_{(b)}|^2 = |M_{(a)}|^2 + |M_{(b)}|^2 + (\text{interference})$$
(1)

- \Rightarrow Medium parton aligned along the jet particle
- \Rightarrow Collective motion
- \Rightarrow Can explain the ridge behavior

Results

Correlation between

- p' & k
- : final jet and emitted photon
- p' & a'
- : final jet and final medium parton

Set the coordinates

- z-axis along p'
- p on x-z plane
 - \rightarrow Reaction plane

Momentum distribution of initial medium partons

- Assume Maxwell-Boltzmann distribution
- Fermi-Dirac distribution gives same result

Initial condition

- $E = 10 \,\mathrm{GeV}$
- $E = 9 \,\mathrm{GeV}$

- Dependency check : $heta_{
m p} = 1 0 \sim 50\,^\circ$

$$heta_{\mathbf{p}} = \mathbf{10}^{\circ}$$
 $E_k = 500 \,\mathrm{MeV}$ $k_B T = 200 \,\mathrm{MeV}$

- Dependency check : $heta_{
m p} = 1 0 \sim 50\,^\circ$

$$\theta_{\rm p} = 30^{\circ}$$
 $E_k = 500 \,{
m MeV}$ $k_B T = 200 \,{
m MeV}$

- Dependency check : $heta_{
m p} = 1 0 \sim 50\,^\circ$

$$\theta_{\mathbf{p}} = \mathbf{50}^{\circ}$$
 $E_k = 500 \,\mathrm{MeV}$ $k_B T = 200 \,\mathrm{MeV}$

- Dependency check : $heta_{
m p} = 10 \sim 50\,^\circ$

As θ_p increases...

- Peak position is shifted along p rather than p'
 - Peak aligns to the initial jet particle
- Peak amplitude reduces by \sim 0.0001 times
 - High energy jet is hard to change its direction
- Peak becomes sharper

- Dependency check : $E_k = 250 \sim 750 \, {
m MeV}$

 $\theta_p = 10^{\circ}$ **E**_k = **250** MeV $k_B T = 200$ MeV

- Dependency check : $E_k = 250 \sim 750 \, {
m MeV}$

 $\theta_p = 10^{\circ}$ **E**_k = **500** MeV $k_B T = 200$ MeV

- Dependency check : $E_k = 250 \sim 750 \, {
m MeV}$

$$\theta_p = 10^{\circ}$$
 E_k = **750** MeV $k_B T = 200 \text{ MeV}$

- Dependency check : $E_k = 250 \sim 750 \, {\rm MeV}$

As E_k increases...

- $\bullet~$ Peak decreses by ~ 0.1
- Tails are combined at $\phi_k \approx 0$
- $d\sigma \sim 0$ for $\theta_k > 90^{\circ}$
- Possible region of $d\sigma \neq 0$ is getting shrinked
 - Higher energy photon emits more in forward direction

- Dependency check : k_BT = $150 \sim 250 \, {
m MeV}$

$$heta_p = 10^\circ$$
 $E_k = 500 \,\mathrm{MeV}$ $\mathbf{k_BT} = \mathbf{150} \,\mathrm{MeV}$

- Dependency check : $k_BT=150\sim250\,{\rm MeV}$

$$heta_p = 10^\circ$$
 $E_k = 500 \,\mathrm{MeV}$ $\mathbf{k_BT} = \mathbf{200} \,\mathrm{MeV}$

- Dependency check : $k_BT=150\sim250\,{\rm MeV}$

$$heta_p = 10^\circ$$
 $E_k = 500 \,\mathrm{MeV}$ $\mathbf{k_BT} = \mathbf{250} \,\mathrm{MeV}$

- Dependency check : $k_BT=150\sim 250\,{\rm MeV}$

As T increases...

- Peak increases by ~ 5
- \bullet # of collison between jet and medium parton increases
 - Due to the thermal motion of medium partons

- Dependency check : $heta_{
m p}=10\sim$ 50 $^{\circ}$

$$\theta_{\mathbf{p}} = \mathbf{10}^{\circ} \qquad k_B T = 200 \,\mathrm{MeV}$$

- Dependency check : $heta_{
m p} = 1 0 \sim 50\,^\circ$

$$\theta_{\mathbf{p}} = \mathbf{30}^{\circ} \qquad k_B T = 200 \,\mathrm{MeV}$$

- Dependency check : $heta_{
m p}=10\sim$ 50 $^{\circ}$

$$\theta_{\mathbf{p}} = \mathbf{50}^{\circ} \qquad k_B T = 200 \,\mathrm{MeV}$$

- Dependency check : $heta_{
m p}=10\sim$ 50 $^{\circ}$

As θ_p increases...

- Peak-side & away-side Ridge move opposite direction each other
- $\Delta heta_{ka'} \sim$ 90 $^{\circ}$
 - Because of 4-momentum conservation on the reaction plane
- Peak amplitude reduces by \sim 0.0001 times
- Peak and Rigde shrink

- Dependency check : k_BT = $150 \sim 250 \, {
m MeV}$

 $\theta_p = 10^{\circ}$ $k_B T = 150 \,\mathrm{MeV}$

- Dependency check : k_BT = $150 \sim 250 \, {
m MeV}$

 $\theta_p = 10^\circ$ $k_B T = 200 \,\mathrm{MeV}$

- Dependency check : $k_BT=150\sim 250\,{\rm MeV}$

 $\theta_p = 10^\circ$ $k_B T = 250 \,\mathrm{MeV}$

- Dependency check : $k_BT=150\sim 250\,{\rm MeV}$

As T increases...

- Peak increases by ~ 5
- \bullet # of collison between jet and medium parton increases
 - Due to the thermal motion of medium partons

Conclusion & Outlooks

- We can describe ridge structure through kinematic interpretation
 - Correlation between p' and k
 - $\rightarrow~$ Peak aligns to initial jet particle
 - \rightarrow Photon is emitted in forward direction
 - Correlation between p' and a'
 - \rightarrow Ridge sturucture appears
 - $\rightarrow~$ Position of peak is determined by 4-momentum conservation on x-z plane
- We have to study further effects
 - Apply boost and flow effects on initial parton distribution
 - Expand to multiple scttering
 - Eventually included Gluon Bremsstrahlung

Thanks for your attention!