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There is good evidence for the presence of oscillation in counting statistics, in many different, apparently very disparate 
branches of physics. Examples include:  
- oscillations of the high-order cumulants of transport through a Mach-Zender interferometer , and  
- in transport through a double quantum dot   
- oscillations  have been seen in quantum optics (in photon distribution function in slightly squeezed states)  
- as well as in elementary particle physics,  
further demonstrating the universality of the phenomenon in a large class of stochastic processes. In fact, whereas 
theoretical studies of a number of different systems have found that the high-order cumulants oscillate as functions of 
certain parameters, so far  no systematic explanation of this phenomenon has been given. 
In this presentation we concentrate on oscillation phenomena seen at LHC energies in transverse momentum distributions 
and multiplicity distributions.  

Large  transverse momentum distributions apparently exhibit power-like behavior. However, we argue that, under closer 
inspection, this behavior is in fact decorated with some log-periodic oscillations (seen in all LHC experiments).  
In what concerns multiplicity distributions P(N), they are most frequently described by the NBD. However, with increasing 
collision energy some systematic discrepancies become more and more apparent. The wave structure of the multiplicity 
distributions already observed by ALICE, CMS (and previously also by UA5) experiments is still hardly significant.   
Our result is not directly connected with the wave structure observed in data on P(N) for N> 25. The coefficients Cj  
(connected with “combinants” ) are completely insensitive to the P(N > (j +1)) tail of the multiplicity distribution, whereas 
their oscillatory behavior starts from the very beginning.  
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Transverse momentum distributions are characterized by  
a quasi-power law (Hagedorn formula or Tsallis distribution)  
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Transverse momenta distributions of different kinds can be described by a quasi power law formula (known as 
QCD-inspired Hagedorn formula or Tsallis distribution when the observation is interpreted in terms of the statistical 
model of particle production, employing the Tsallis non-extensive statistics) which for large values of transverse 
momenta becomes scale free (independent on T) power distribution  n

Tp/1
Tsallis distribution successfully describes spectra, the flux of which changes by over 14 orders of magnitude. 
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Examples of mechnisms leading to  
Tsallis distribution: 
      - Superstatistics 
      - Stochastic network approach 
      - Multiplicative noise 
      - MaxEnt (Shannon entropy) 
 

                       more information:  
APPB 46 (2015) 1103 
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Superstatistics 
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Superstatistics which is a superposition of two different statistics relevant to driven nonequilibrium systems  
with a stationary state and intensive parameter fluctuations [C. Beck et al., Physica A322 (2003) 267] 
 

Tsallis statistics as a special case of superstatistics 
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transverse momentum distributions are characterized by  
a quasi-power law (Hagedorn formula or Tsallis distribution)  
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The values of the corresponding power indices are similar, strongly indicating the 
existence of a common mechanism behind all these processes 
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Multiplicity distribution in jet events  
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Self-similarity in jet events following from p-p collisions at LHC 

The self-similarity of the scattering process was already 
recognized by Hagedorn [R. Hagedorn and R. Ranft, Suppl. 
Nuovo Cim. 6, 169 (1968)], who described the various 
possible particle states as a ’fireball’ and who defined a 
fireball as follows:  
 
A fireball is  
*... a statistical equilibrium of an undetermined 
number of all kinds of fireballs, each of which in 
turn is considered to be... 
(back to *) 
 
Clearly, nowadays we would call this a self-similarity 
assumption. 
 
Also [G. Gustafson and A. Nilsson, Nucl. Phys. B355, 106, (1991)] 
 
QCD predicts that parton fragmentation into final 
state hadrons proceeds through multiple sub-jet 
production. This cascade of jets to sub-jets to sub-
sub-jets (et cetera) to final state hadrons should 
demonstrate self-similar behavior. 
 
and [J.D. Bjorken, Phys. Rev. D45, 4077 (1992)]  
 
In QCD extra gluons of lower-pt, scales can also be 
radiated. This provides new populations of jets, 
which again extend the entire lego plot, including 
the extensions we have exhibited. The self-similar 
character of this extension should be evident. 

GW and ZW,  Phys.Lett.B 727 (2013) 163 [arXiv:1310.0671] 
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Tsallis distribution decorated with log-periodic oscillation 

transverse momentum distributions  
are characterized by  

a quasi-power law (Tsallis distribution)  
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Tsallis distribution is decorated with  
log-periodic oscillations 
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R(E) = a + b cos [c ln(E + d) + f] 

a = 0.909, b = 0.166, c = 1.86, d = 0.948 and f = −1.462 
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Fit to data for pp collisions at 0.9 and 7 TeV  
from CMS experiment.  
Parameters used are, respectively,  
(T = 0.135, m = 8) and (T = 0.145, m = 6.7). 

Different energies 
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if for some function O(x), one finds that  
 

O(λx) =μO(x)  
 
then it is scale invariant and its form follows a simple power law, 
 

                                                      O(x) = Cx-m                     with    m = -ln μ/ ln λ  
 
 

This relation can be written as     
 μλm  = 1 =   kie π2

where k is an arbitrary integer. It means therefore that, in general, 
 

m = −ln μ/ ln λ + i2πk/ ln λ,  
 
i.e., it is a complex number, the imaginary part of which signals a hierarchy of scales 
leading to  
                                             Log-periodic oscillations  
                              

Scale invariance 
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Superstatistics 

Superstatistics is a superposition of two 
 different statistics relevant to driven 
 nonequilibrium systems with a stationary state  
and intensive parameter fluctuations  

C.Beck, PRL 87 (2001) 180601 
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Log-periodic oscillations 
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   the complex pdf 
      the imaginary part is proportional to the degree of incompatibility of the correlated stochastic processes.  

1 10 100
0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

          s1/2= 7 TeV
 ATLAS
 CMS

R(
p T)

pT [GeV]



log-periodic scale parameter T 
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Temperature fluctuations vs. multiplicity fluctuations 
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multiplicity distributions 
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Recurence relation 
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combinants 
S. Hegyi, Phys. Lett. B 463 (1999) 126 
S.K.Kauffman, M.Gyulassy, JPA11 
                                            (1978)1715  

smooth dependence on rank j for NBD 
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Coefficients , Cj  fitted by a triangular wave,  
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Dynamical Clan Model (DCM) 
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   The coefficients Cj are completely insensitive to the P(N > (j +1)) tail of the multiplicity distribution. 
      Our analysis is not directly connected with the wave structure observed in data on P(N) for multiplicities   
      N > 25. The oscillatory behavior of Cj is observed starting from the very beginning.  

   We observe strong oscillations of coefficients Cj at LHC energies. 
      The coefficients Cj tell us how P(N+1) depends on P(N −j), i.e., they encode the memory about particles 
      produced earlier. For the NBD this memory exponentially disappears with increasing distance (rank) j. 

Concluding Remarks 

   Log-periodic structures in the data indicate that the system and/or the underlying physical mechanisms  
      have characteristic scale invariance behavior. The discrete scale invariance and its associated  
      complex exponents can appear spontaneously, without a pre-existing hierarchical structure. 

   Tsallis distribution in energy results in NBD for multiplicity distribution.  

  Transverse momentum distributions are characterized by a quasi-power law (Tsallis distribution)  
     decorated with log-periodic oscillations. 



Alternatives?  - Two-component models   
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Oscillation phenomena or   two-component model   

Sensitivity of the ratio R and coefficients Cj  to the systematic uncertainties of the measurement and to the 
unfolding uncertainties can be checked only by the scrutinous analysis of the raw data with the proper 
response matrix (and that  exceeds  our capability).  
 
However, in the case when these oscillations (or some other, equally nonexpected) would be 
experimentally confirmed, a new, fresh look at the dynamics of  multiparticle production processes would 
be open. 



It turns out that occurence of such oscillations do not eliminate the possible use of a multicomponent 
NBD. Namely,  the multicomponent NBD can, after all, lead to the oscillatory behavior of coefficients Cj  . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Very recent result: 



It turns out that occurence of such oscillations do not eliminate the possible use of a multicomponent 
NBD. Namely,  the multicomponent NBD can, after all, lead to the oscillatory behavior of coefficients Cj  . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Very recent result: 



The 2-component NBD with suitably chosen parameters produces oscillations (dashed line). But 
those parameters are not the one used so far in fitting P(N) (full line). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Therefore:  Possible models of multiparticle production  must describe, with the same parameters, 
both the multiplicity distributions P(N) and the corresponding coefficients Cj    becsause these 
coefficients   provide us a new information,  which can be used to improve models  of particle 
production processes. 
 

Very recent result: 



여러분의 관심 에 감사드립니다  

Thank you for your attention  
and I look forward to your comments and questions 
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and the hierarchy of  evolution  

Frequency of oscillations   
Comparison of fit parameters of oscillating term  R clearly show that observed frequency given by parameter  c
is few tens  smaller than expected  
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