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• Color flow in high energy scattering processes 

• Effects in polarized proton collisions 

• Effects in unpolarized proton collisions 

• The small-x limit: the polarization of the    
Color Glass Condensate
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Color flow in high energy  
scattering processes



Theoretical description of high-energy scattering cross sections is based on 
factorization in perturbative partonic hard scattering factors (H) and 
nonperturbative hadronic correlators (Φ,Γ,Δ), i.e. parton distributions 

Factorization and color flow

Higgs production: pp→HX 

Color treatment is simple at high 
energies: separate traces, not 
dependent on kinematics 
 
But in the actual process there are 
no colored final states
and there are many soft gluons 
exchanged to balance the color

This cartoon version of the color flow works fine in most cases, when collinear 
factorization applies



Similarly, one would expect that the following two processes involve the same color 
trace and the dynamics is unaffected by the color flow

Factorization in terms of correlators

However, this is not always the case, e.g. for certain differential cross sections, 
that are sensitive to the transverse momentum of the partons 
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summation of all gluon exchanges leads to 
path-ordered exponentials in the operators

Gauge invariance of correlators
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The path C depends on whether the color interactions are with an incoming or 
outgoing color charge, yielding different paths for different processes

[Collins & Soper, 1983; Boer & Mulders, 2000; Brodsky, Hwang & Schmidt, 2002; Collins, 2002; 
Belitsky, Ji & Yuan, 2003; Boer, Mulders & Pijlman, 2003]
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The path C depends on whether the color interactions are with an incoming or 
outgoing color charge, yielding different paths for different processes

[Collins & Soper, 1983; Boer & Mulders, 2000; Brodsky, Hwang & Schmidt, 2002; Collins, 2002; 
Belitsky, Ji & Yuan, 2003; Boer, Mulders & Pijlman, 2003]

This does not automatically imply that the gauge links affect observables, but 
it turns out that they do in certain cases sensitive to the transverse momentum

In that case the gauge link path has extent ξT in the transverse direction (ξT is 
conjugate to kT) which can be located at different places along the lightcone 



Gauge invariant definition of TMDs in semi-inclusive DIS contains a future 
pointing Wilson line, whereas in Drell-Yan (DY) it is past pointing
[Belitsky, Ji & Yuan '03]
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Gauge invariant definition of TMDs in semi-inclusive DIS contains a future 
pointing Wilson line, whereas in Drell-Yan (DY) it is past pointing
[Belitsky, Ji & Yuan '03]
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The quark correlator is parametrized in 
terms of transverse momentum dependent 
parton distributions (TMDs) 

Transverse Momentum of Partons
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Sivers TMD

The proper theoretical definition of the Sivers TMD is not unique
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Sivers TMD

Sivers effect is odd under + ↔ −
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The future and past pointing gauge links are related by a combination of a P and T 
transformation and there happen to be parton distributions that are odd under this 
transformation, such as the Sivers TMD
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The future and past pointing gauge links are related by a combination of a P and T 
transformation and there happen to be parton distributions that are odd under this 
transformation, such as the Sivers TMD

Initially it was thought that the path of the gauge link is irrelevant, because a gauge can 
always be chosen such that it is unity. For example, for the future pointing staple link: 

Lightcone gauge (A+=0) with advanced boundary condition (AT(∞−,ξT)=0)

But now the path/process dependence is in the gauge condition
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(AT(±∞−,ξT)=0) is not allowed, as it overfixes the gauge
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 S.V. Ivanov, G.P. Korchemsky & A.V. Radyushkin,
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x0 to x, otherwise one forces Fμν to be zero in certain regions, which is not allowed

Contour gauge:



Time reversal invariance relates the Sivers functions of SIDIS and Drell-Yan

This is a calculable process dependence, which yields the relation [Collins '02]:

f?[SIDIS]
1T = �f?[DY]

1T to be tested

Process dependence of Sivers TMD

The Sivers effect in SIDIS has been clearly observed by HERMES at DESY (PRL 2009) 
& COMPASS at CERN (PLB 2010)

The corresponding DY experiments are in progress at CERN (COMPASS), Fermilab 
(SeaQuest) & RHIC (W-boson production rather) & planned at NICA (Dubna)

Not just a test of this relation, but of TMD factorization formalism in essence



Sivers function on the lattice
By taking specific x and kT integrals one can define the “Sivers shift” <kT x ST>(n,bT): 
the average transverse momentum shift orthogonal to transverse spin ST  
[Boer, Gamberg, Musch, Prokudin, 2011]

This well-defined quantity can be evaluated on the lattice
[Musch, Hägler, Engelhardt, Negele & Schäfer, 2012]
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the average transverse momentum shift orthogonal to transverse spin ST  
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This is the first `first-principle’ demonstration that the Sivers function is nonzero 
for staple-like links. It clearly corroborates the sign change relation (as it should)
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Gluon Sivers effect

There is also a Sivers effect for gluons
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The gluon Sivers function in processes with two + links is of opposite sign compared 
to ones with two - links, but what about the ones with one + and one - link?

Related to antisymmetric (fabc) and symmetric (dabc) color structures

Bomhof, Mulders, 2007; Buffing, Mukherjee, Mulders, 2013

These processes probe 2 distinct, independent gluon Sivers functions 



Process dependence of gluon Sivers TMD

This process probes a gluon correlator with two + links e p" ! e0 QQ̄X

This process probes a gluon correlator with two - links p" p ! � �X

p" p ! � jetX This process probes a gluon correlator with a + and - link



Process dependence of gluon Sivers TMD

This process probes a gluon correlator with two + links e p" ! e0 QQ̄X

This process probes a gluon correlator with two - links p" p ! � �X

p" p ! � jetX This process probes a gluon correlator with a + and - link

Conclusion: despite the process dependence of the gluon Sivers TMD, one can still 
know if and how the different processes are related 

Predictability is not automatically lost because of nonuniversality

Single spin asymmetry studies at various colliders can thus be either related or 
complementary, depending on the processes considered

D.B., Lorcé, Pisano & Zhou,  arXiv:1504.04332



Process dependence of gluon TMDs

Is this TMD nonuniversality a polarization issue only? No!

This process dependence is also present for the unpolarized gluon TMD, 
as was first realized in a small-x context 
Dominguez, Marquet, Xiao, Yuan, 2011



Process dependence of gluon TMDs

Is this TMD nonuniversality a polarization issue only? No!

This process dependence is also present for the unpolarized gluon TMD, 
as was first realized in a small-x context 
Dominguez, Marquet, Xiao, Yuan, 2011

Kharzeev, Kovchegov & Tuchin (2003): ``A tale of two gluon distributions'' 
They noted there are 2 distinct but equally valid definitions for the small-x gluon 
distribution: the Weizsäcker-Williams (WW) and the dipole (DP) distribution

KKT:  “cannot offer any simple physical explanation of this paradox” 

The explanation turns out to be in the process dependence of the gluon 
distribution, in other words, its sensitivity to the initial and/or final state 
interactions (ISI/FSI) in a process

The difference between the WW and DP distributions would disappear 
without ISI/FSI   



For most processes of interest there are 2 relevant unpolarized gluon distributions 
Dominguez, Marquet, Xiao, Yuan, 2011

WW vs DP
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For most processes of interest there are 2 relevant unpolarized gluon distributions 
Dominguez, Marquet, Xiao, Yuan, 2011

WW vs DP

Different processes probe one or the other or a mixture, so this can be tested

[+,+]

[+,-]

At small x the two correspond to the Weizsäcker-Williams (WW) and dipole (DP) 
distributions, which are generally different in magnitude and width:

WW

DP

For unpolarized gluons [+,+] = [-,-] and [+,-] = [-,+]

Higgs production in pp and pA collisions probes the [-,-] or WW gluon TMD



Transverse Momentum of Gluons

The gluon correlator:
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For unpolarized protons:

[Mulders, Rodrigues '01]

In addition, for unpolarized protons there is another type of gluon distribution

Gluons inside unpolarized protons can be polarized!



Gluon polarization inside unpolarized protons
[Mulders, Rodrigues '01]
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Gluon polarization inside unpolarized protons
[Mulders, Rodrigues '01]

Linear polarization of gluons

an interference between 
±1 helicity gluon states
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The LHC is actually a polarized gluon collider

Affects Higgs production at the LHC 
Boer, Den Dunnen, Pisano, Schlegel, Vogelsang, PRL 2012

It remains to be seen whether this can be exploited

Gluons inside unpolarized protons can be polarized!
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- effect of linear gluon polarization in Higgs production on the order of 2-5%
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⊥g from Higgs production may be too challenging  
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Conclusions: 
- effect of linear gluon polarization in Higgs production on the order of 2-5%
- extraction of h1

⊥g from Higgs production may be too challenging  

Effects larger at smaller Q (0±+ quarkonia) and at small x (plots are for x ~ 0.016)



Polarization of the CGC
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pp → H X and pp → ηc/b X or 𝛘c/b0 X probe [-,-] = WW [D.B., Pisano, 2012]

pp → 𝛾* + jet + X probes [+,-] = DP [Jian Zhou. 2016]

For this purpose pA collisions are even better suited of course



Linear gluon polarization at EIC

WW h1
⊥g  also accessible in dijet production in eA collisions at a high-energy EIC 

[Metz, Zhou 2011; Pisano, D.B., Brodsky, Buffing & Mulders, 2013]
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⊥g is (moderately) suppressed for small transverse momenta:
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Linear gluon polarization at EIC

WW h1
⊥g  also accessible in dijet production in eA collisions at a high-energy EIC 

[Metz, Zhou 2011; Pisano, D.B., Brodsky, Buffing & Mulders, 2013]

Large effects are found 
Dumitru, Lappi, Skokov, 2015
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The WW h1
⊥g is (moderately) suppressed for small transverse momenta:
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The DP-type Sivers function is not suppressed and can be probed in pA collisions

At small x the WW Sivers function is suppressed by a factor of x compared to the 
unpolarized gluon function
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The DP-type Sivers function turns out to be the spin-dependent odderon

a single Wilson loop matrix element

U [⇤] = U [+]
[0,y]U

[�]
[y,0]

The imaginary part of the Wilson loop determines the gluonic single spin asymmetry
It is the only contribution, as opposed to the many contributions at larger x 



p↑p ➝ h± X at xF < 0 

BRAHMS, 2008   √s = 62.4 GeV
low pT, up to roughly 1.2 GeV 

where gg channel dominates

spin-dependent odderon is C-odd, 
whereas gg in the CS state is C-even 

expect smaller asymmetries 
in neutral pion and jet production

STAR, 2008
√s = 200 GeV
pT between 1 and 3.5 GeV
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Conclusions

High energy scattering processes sensitive to the transverse momentum of 
partons involve highly nonlocal gauge links that track/reflect the color flow

This unexpectedly affects observables, such as transverse spin asymmetries (sign 
change between processes) or the Higgs transverse momentum distribution

The corresponding nonlocal quantities, such as the Sivers function, are amenable 
to lattice calculations, which indicates a substantial magnitude (as do the data)

Also unpolarized protons and spin-0 hadrons have a nontrivial spin structure

The state of highest gluon density can be maximally polarized
The color flow determines how much this polarization affects observables 
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For transversely polarized protons:

The gluon Sivers function in processes with two + links is of opposite sign compared 
to ones with two - links, but what about the ones with one + and one - link?

Related to antisymmetric (fabc) and symmetric (dabc) color structures

Bomhof, Mulders, 2007; Buffing, Mukherjee, Mulders, 2013

These processes probe 2 distinct, independent gluon Sivers functions 



Process dependence of gluon Sivers TMD

This subprocess probes a gluon correlator with two + links 
(both future pointing)�⇤ g ! QQ̄

e p" ! e0 QQ̄X

In the kinematic regime where pair rapidity is central, one effectively selects the 
subprocess:

This subprocess probes a gluon correlator with two - links 
(both past pointing)

p" p ! � �X

g g ! � �

Qiu, Schlegel, Vogelsang, 2011
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Process dependence of gluon Sivers TMD

This subprocess probes a gluon correlator with two + links 
(both future pointing)�⇤ g ! QQ̄

e p" ! e0 QQ̄X

In the kinematic regime where pair rapidity is central, one effectively selects the 
subprocess:

This subprocess probes a gluon correlator with two - links 
(both past pointing)

p" p ! � �X

g g ! � �

Qiu, Schlegel, Vogelsang, 2011

e p" ! e0 QQ̄X p" p ! � �X

The gluon Sivers function is of opposite sign in

versus ︷
Or any other color singlet state 
in gg dominated kinematics

A sign-change relation for gluon Sivers functions



Linear gluon polarization at small x
Like any TMD h1
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Conclusion: the linear gluon polarization can become maximal at small x

The “kT-factorization" approach (CCFM) yields maximum polarization too:

Catani, Ciafaloni, Hautmann, 1991

Applied to Higgs production by A.V. Lipatov, Malyshev, Zotov, 2014
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Linear gluon polarization at small x
Like any TMD h1

⊥g  distributions has a link/process dependence. In the CGC framework:

h?g
1,WW ⌧ f?g

1,WW for k? ⌧ Qs, h?g
1,WW = 2f?g

1,WW for k? � Qs

Metz, Zhou '11

There is no reason to expect h1
⊥g to be small, especially at small x

The perturbative tail of h1
⊥g  has a 1/x growth, which keeps up with f1:
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Conclusion: the linear gluon polarization can become maximal at small x

The “kT-factorization" approach (CCFM) yields maximum polarization too:
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MV model

Processes involving G(1) (WW) [+,+] in the MV model can be expressed in terms 
of G(2) ~ C(k⊥)

Gelis, Peshier, 2002

�A ! QQ̄X

In the MV model one may not notice the origin for the difference between WW 
and DP, because the two TMDs become related:

MV
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Processes involving G(1) (WW) [+,+] in the MV model can be expressed in terms 
of G(2) ~ C(k⊥)

Gelis, Peshier, 2002

�A ! QQ̄X

Higgs production in pp and pA collisions probes the WW gluon distribution

Finite Nc: Akcakaya, Schäfer, Zhou, 2013; Kotko, Kutak, Marquet, Petreska, Sapeta, van Hameren, 2015

For dijet in pA the result requires large Nc , otherwise 4 additional functions appear
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𝛾+jet in pA in leading power not sensitive to h1
⊥g [D.B., Mulders, Pisano, 2008]
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𝛾*+jet in pA is sensitive to h1
⊥g [Jian Zhou, 2016]

Linear gluon polarization at small x

h1
⊥g  is not easy to probe

0±+ quarkonium production allows to measure the polarization of the CGC
using the angular independent pT distribution

For h1
⊥g  it holds that [+,+] = [-,-] and [+,-] = [-,+], like for f1

pp → H X and pp → ηc/b X or 𝛘c/b0 X probe [-,-] = WW

Hence, EIC and LHC can probe same h1
⊥g

[D.B., Pisano, 2012]
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The range of predictions for bottomonium production:

Conclusion: very large theoretical uncertainties in quarkonium production (more 
sensitive to unknown nonperturbative part than Higgs production), but larger effects

Echevarria, Kasemets, Mulders, Pisano, 2015Boer & den Dunnen, 2014
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More promising may be C-even (pseudo-)scalar quarkonium production
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Best measured at a future Electron-Ion Collider (USA) or LHeC (CERN)
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- effect of linear gluon polarization in Higgs production on the order of 2-5%
- extraction of h1

⊥g from Higgs production may be too challenging  

More promising may be C-even (pseudo-)scalar quarkonium production
Boer & Pisano, 2012

Very large theoretical uncertainties in quarkonium production (more sensitive to 
unknown nonperturbative input than Higgs production), but much larger effects

Boer, Brodsky, Mulders & Pisano, 2012
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momentum shift orthogonal to a given 
transverse quark polarization is clearly 
nonzero inside an unpolarized proton
[Musch et al., ’11, Engelhardt et al. ’14]

Conclusion: unpolarized protons have 
an asymmetric quark spin structure 
which would vanish without gauge links


