MC Energy Loss

 In GEANT4, energy loss of secondary particle is not added in default energy loss value.

In **GEANT3**, energy loss for secondaries are added.

• If energy loss for secondary particles are added, the values agree with TRIM/LISE++ data, but not in low energy.

Low energy dosimetric applications

- 3 physics lists(QGSP_BERT_HP, QGSP_BIC_HP, FTFP_BERT) were tested but no big differences were shown.
 *reference of physics list :<u>http://geant4.cern.ch/support/</u> proc_mod_catalog/physics_lists/useCases.shtml
- Data for MC(GEANT4) are averaged over 100 events per each point.

Proton Energy Loss

Alpha Energy Loss

Drift Length

4

Electronics Task

GET Electronics

- Dynamic range : 120 fC
- 1 ADC channel = 0.0375 fC
- 1 time bucket = 40 ns
- Electronics Signal
 - Signal shape is obtained from the pulser data of HIMAC test.
 - Height of the signal is proportional to incident charge.

Electronics Task Simulation

Pad Response

Pad Response Function

$$P(\lambda) = \frac{K_1}{K_2\sqrt{K_3}} \left[\arctan\sqrt{K_3} \tanh\left(K_2\left(\lambda + \frac{w}{2h}\right)\right) - \arctan\sqrt{K_3} \tanh\left(K_2\left(\lambda - \frac{w}{2h}\right)\right) \right]$$

 $\lambda = x/h$

x : distance from the center of avalanche

h : distance from anode wire plane to cathode pad plane

w : width of pad

K_n : constants related to geometry

* Calculation of a semi-empirical cathode charge distribution for SπRIT - William Powell

using Gatti distribution

5%

15

z (mm)

5

10

20