Airton Deppman

Fractals in nature

Fractals in HEP

Non extensivity and fractality

NESCI

Experimental verification of nonextensivity in HEP

NESCT and the hadronic fractal dimension

Conclusions

Fractal Aspects of Hadronic Interaction

Airton Deppman

ISMD2016 - Jeju Island - S. Korea (Aug 29 - Sep 04 , 2016)

- Fractal Aspects of Hadronic Interaction
- Airton Deppman
- Fractals in nature
- Fractals in HEP
- Non extensivity and fractality
- NESCT
- Experimental verification of nonextensivity in HEP
- NESCT and the hadronic fractal dimension
- Conclusions

- 1 Fractals in nature
- 2 Fractals in HEP
- **3** Non extensivity and fractality
- 4 NESCT
- 5 Experimental verification of nonextensivity in HEP
- 6 NESCT and the hadronic fractal dimension

7 Conclusions

Airton Deppman

Fractals in nature

Fractals in HEP

Non extensivity and fractality

NESCT

Experimental verification of nonextensivity in HEP

NESCT and the hadronic fractal dimension

Conclusions

What are fractals?

Complex patterns obtained from simple rules repeated many times

Airton Deppman

Fractals in HEP

R.Hwa

Intermittency

Normalized Moments:
R.Hwa
PRD41 (1990) 1456
$$C_q = \sum_{k_0}^{\infty} k^q P_k / \left(\sum_{k_0}^{\infty} k P_k \right)^q = \delta^{\tau(q)}$$

 $P_k^q = (Q_k / N)^q = \delta^{\alpha_q}$
 Q_k = number of events with k particles in the bin with width δ

N = total number of events

$$\tau(q) = q\alpha_q - f(\alpha_q) = (q-1)D_q$$

Airton Deppman

Fractals in HEP

R Hwa

Normalized Moments: $\begin{aligned} C_q &= \sum_{k_0}^{\infty} k^q P_k / \left(\sum_{k_0}^{\infty} k P_k \right)^q = \delta^{\tau(q)} \\ P_k^q &= (Q_k / N)^q = \delta^{\alpha_q} \end{aligned}$ PRD41 (1990) 1456 Q_k = number of events with k particles in the bin with width δ N = total number of events $au(q) = q lpha_q - f(lpha_q) = (q-1) D_q$ fractal dimension fractal spectrum

Intermittency

Airton Deppman

Fractals in HEP

Normalized Moments: $\begin{aligned} &C_q = \sum_{k_0}^{\infty} k^q P_k / \left(\sum_{k_0}^{\infty} k P_k \right)^q = \delta^{\tau(q)} \\ &P_k^q = (Q_k / N)^q = \delta^{\alpha_q} \end{aligned}$ PRD41 (1990) 1456 Q_k = number of events with k particles in the bin with width δ N = total number of events $au(q) = q lpha_q - f(lpha_q) = (q-1) D_q$ fractal dimension fractal spectrum

Intermittency

R Hwa

Intermittency Exponential growth of cummulants (integrated correlation)

Self-similarity \rightarrow N.G. Antoniou et al PRC93, 014908 (2016)

Airton Deppman

Fractals in nature

Fractals in HEP

Non extensivity and fractality

NESCT

Experimental verification of nonextensivity in HEP

NESCT and the hadronic fractal dimension

Conclusions

Intermittency data analysis

E. Sarkisyan: arXiv: hep-ex/0209079

Airton Deppman

Fractals in nature

Fractals in HEP

Non extensivity and fractality

NESCT

Experimental verification of nonextensivity in HEP

NESCT and the hadronic fractal dimension

Conclusions

Parton Distribution Function

T. Lastovicka EPJC 24(2002) 529

	\mathcal{D}_0	\mathcal{D}_1	\mathcal{D}_2	${\cal D}_3$	$Q_0^2 [\text{GeV}^2]$
ll fit	0.339	0.073	1.013	-1.287	0.062
	± 0.145	± 0.001	± 0.01	± 0.01	± 0.01
D_2 fixed	0.523	0.074	1	-1.282	0.051
	± 0.014	± 0.001	const.	± 0.01	± 0.002

$$\begin{split} logf_i(x,Q^2) &= D_1 log(1/x) log(1+Q^2/Q_o^2) + D_2 log(1/x) + \\ &D_3 log(1+Q^2/Q_o^2) + D_o^i \end{split}$$

Airton Deppman

Fractals in nature

Fractals in HEP

Non extensivity and fractality

NESCT

Experimental verification of nonextensivity i HEP

NESCT and the hadronic fractal dimension

Conclusions

Self-similarity in experimental data

Wilk & Wlodarczyk PLB 727 (2013) 163-167

Airton Deppman

Fractals in nature

Fractals in HEP

Non extensivity and fractality

NESCT

Experimental verification of nonextensivity in HEP

NESCT and the hadronic fractal dimension

Conclusions

Fireball and hadron definitions

Hagedorn's defintion for fireball

A fireball is:

 $\longrightarrow a$ statistical equilibrium (hadronic black-body radiation) of an undetermined number of all kinds of fireballs, each of which, in turn, is considered to be —

The model we wish to focus on in this paper is the *bootstrap model of hadrons*, in which the hadrons are assumed to be compounds of hadrons. The model can be represented schematically by

Frautischi's defintion for hadrons:

Airton Deppman

Fractals in nature

Fractals in HEP

Non extensivity and fractality

NESCT

Experimental verification of nonextensivity ir HEP

NESCT and the hadronic fractal dimension

Conclusions

Fireball and hadron definitions

Hagedorn's defintion for fireball

A fireball is:

 \longrightarrow a statistical equilibrium (hadronic black-body radiation) of an undetermined number of all kinds of fireballs, each of which, in turn, is considered to be —

From this definition Hagedorn developed the thermodynamics of fireballs

The model we wish to focus on in this paper is the *boolstrap model of hadrons*, in which the hadrons are assumed to be compounds of hadrons. The model can be represented schematically by

Frautischi's defintion for hadrons:

Airton Deppman

Fractals in nature

Fractals in HEP

Non extensivity and fractality

NESCT

Experimental verification of nonextensivity in HEP

NESCT and the hadronic fractal dimension

Conclusions

Early consequences of Hagedorn's theory

 T_H limiting value (Hagedorn's temperature)

 $ho(m) \propto m^{-5/2} e^{-eta_o m}$ (hadron mass spectrum)

Exponential behaviour of high p_T distribution

 T_H as a critical temperature (quark-gluon plasma)

HRG models - sucessful in describing many features of HEP

Airton Deppman

Fractals in nature

Fractals in HEP

Non extensivity and fractality

NESCT

Experimental verification of nonextensivity in HEP

NESCT and the hadronic fractal dimension

Conclusions

Early consequences of Hagedorn's theory

T_H limiting value (Hagedorn's temperature)

Airton Deppman

Fractals in nature

Fractals in HEP

Non extensivity and fractality

NESCT

Experimental verification of nonextensivity in HEP

NESCT and the hadronic fractal dimension

Conclusions

Early consequences of Hagedorn's theory

T_H limiting value (Hagedorn's temperature)

Airton Deppman

Fractals in nature

Fractals in HEP

Non extensivity and fractality

NESCT

Experimental verification of nonextensivity in HEP

NESCT and the hadronic fractal dimension

Conclusions

Thermofractal - definition

1 The total energy is given by

$$U=F+E\,,$$

The number of subsystem in N for all thermofractals.

2 $\langle E \rangle / \langle F \rangle$ is constant for all the subsystems. $E/F \to \tilde{P}(E/F)$.

3 At some point *n* of the hierarchy of subsystems the phase space is so narrow that one can consider

$$\tilde{P}(E_n)dE_n=\rho dE_n\,,$$

with ρ being independent of the energy E_n .

Airton Deppman

Fractals in nature

Fractals in HEP

Non extensivity and fractality

NESCT

Experimental verification of nonextensivity in HEP

NESCT and the hadronic fractal dimension

Conclusions

Thermofractal - Thermodynamics

For an ideal gas of elementary particles (Landau):

$$P(U)dU = (kT)^{-\frac{3N}{2}}U^{\frac{3N}{2}-1}\exp\left(-\frac{U}{kT}\right)dU,$$

Define for a thermofractal:

$$P(U)dU = A\exp(-\alpha F/kT)DFDE$$

with

$$\alpha = 1 + \frac{\varepsilon}{NkT}$$

and

$$\varepsilon = \frac{E}{F}kT$$
.

$$DF = F^{\frac{3N}{2}-1}dF$$

and for the internal energy it is possible to write

$$DE = \tilde{P}(E)dE$$
,

Airton Deppman

Fractals in nature

Fractals in HEF

Non extensivity and fractality

NESCT

Experimental verification of nonextensivity in HEP

NESCT and the hadronic fractal dimension

Conclusions

Thermofractal - Thermodynamical potential

The thermodynamical potential is given by

$$\Omega = \int_0^\infty \int_0^\infty AF^{\frac{3N}{2}-1} \exp\left(-\frac{\alpha F}{kT}\right) dF \tilde{P}(\varepsilon) d\varepsilon \,.$$

which, after integration on F results in

$$\Omega = A \int_0^\infty \left[1 + rac{arepsilon}{NkT}
ight]^{-3N/2} ilde{P}(arepsilon) darepsilon \, .$$

Second property of thermofractals (self-affine solution):

 $\ln P(U) \propto: \ln \tilde{P}(\varepsilon)$

$$\tilde{P}(\varepsilon) = A \left[1 + \frac{\varepsilon}{NkT} \right]^{-3Nn/2}$$

Airton Deppman

Fractals in nature

Fractals in HEP

Non extensivity and fractality

NESCT

Experimental verification of nonextensivity in HEP

NESCT and the hadronic fractal dimension

Conclusions

Thermofractal and Tsallis

Second property of thermofractals (self-similar solution):

$$\Omega = \int_0^\infty \int_0^\infty AF^{\frac{3N}{2}-1} \exp\left(-\frac{\alpha F}{kT}\right) dF[\tilde{P}(\varepsilon)]^\nu d\varepsilon.$$
$$P(U) := \tilde{P}(\varepsilon)$$

$$\tilde{P}(\varepsilon) = A \left[1 + \frac{\varepsilon}{NkT} \right]^{-\frac{3N}{2}\frac{1}{1-\nu}}$$

Introducing the index q by

$$q-1=\frac{2}{3N}(1-\nu)$$

and the effective temperature

$$\tau = \frac{2(1-\nu)}{3}T$$

$$ilde{P}(arepsilon) = A igg[1 + (q-1) rac{arepsilon}{k au} igg]^{-rac{1}{q-1}} \, .$$

For an ideal gas of thermofractals Tsallis statistics must be used! 18/31

Airton Deppman

Fractals in nature

Fractals in HEF

Non extensivit and fractality

NESCT

Experimental verification of nonextensivity in HEP

NESCT and the hadronic fractal dimension

Conclusions

Nonextensive self-consistent theory

$$Z_q(V_o, T) = \int_0^\infty \sigma(E) [1 + (q-1)\beta E]^{-\frac{q}{(q-1)}} dE$$

and

$$\begin{aligned} \ln[1 + Z_q(V_o, T)] = & \frac{V_o}{2\pi^2} \sum_{n=1}^{\infty} \frac{1}{n} \int_0^\infty dm \int_0^\infty dp \, p^2 \rho(n; m) \\ & \times [1 + (q-1)\beta \sqrt{p^2 + m^2}]^{-\frac{nq}{(q-1)}} \,, \end{aligned}$$

Self-consistency principle:

$$Z_{q}(V_{o}, T) = \int_{0}^{\infty} \sigma(E) [1 + (q - 1)\beta E]^{-\frac{q}{(q-1)}} dE$$
$$= \exp\left\{\frac{V_{o}}{2\pi^{2}\beta^{3/2}} \int_{0}^{\infty} dm \, m^{3/2} \rho(m) [1 + (q - 1)\beta m]^{-\frac{1}{q-1}}\right\} - 1$$

Weak constraint:

 $\ln[\sigma(E)] = \ln[\rho(m)]$

Airton Deppman

Fractals in nature

Fractals in HEF

Non extensivity and fractality

NESCT

Experimental verification of nonextensivity i HEP

NESCT and the hadronic fractal dimension

Conclusions

Self-consistency solution

Self-consistency is obtained if

$$\rho(m) = \frac{\gamma}{m^{5/2}} [1 + (q_o - 1)\beta_o m]^{\frac{1}{q_o - 1}}$$

and

$$\sigma(E) = bE^{a} \left[1 + (q_o - 1)\beta_o E \right]^{\frac{1}{q_o - 1}}$$

Partition function:

$$Z_q(V_o,T)
ightarrow b\Gamma(a+1) igg(rac{1}{eta-eta_o}igg)^{a+1}$$

with

$$a+1=lpha=rac{\gamma V_o}{2\pi^2eta^{3/2}}$$

Limiting temperature: β_o and entropic index: q_o .

Airton Deppman

Fractals in nature

Fractals in HEP

Non extensivity and fractality

NESCI

Experimental verification of nonextensivity in HEP

NESCT and the hadronic fractal dimension

Conclusions

Experimental analyses

Fractal Aspects of Hadronic Interaction Airton Deppman

Experimental analyses

Fractal Aspects of Hadronic Interaction Airton Deppman

Experimental analyses

Airton Deppman

Fractals in nature

Fractals in HEP

Non extensivity and fractality

NESCI

Experimental verification of nonextensivity in HEP

NESCT and the hadronic fractal dimension

Conclusions

Unified description of different properties

$$D = 1 + \frac{\log N'}{\log R} \qquad N = \frac{1}{(q-1)} \frac{\tau}{T}$$

$$R = \frac{(q-1)N/N'}{3-2q+(q-1)N}$$
 $N' = N + 2/3$

Airton Deppman

Fractals in nature

Fractals in HEP

Non extensivity and fractality

NESCI

Experimental verification of nonextensivity in HEP

NESCT and the hadronic fractal dimension

Conclusions

Unified description of different properties with only two free parameters

$$D = 1 + \frac{\log N'}{\log R} \qquad N = \frac{1}{(q-1)} \frac{\tau}{7}$$

$$R = \frac{(q-1)N/N'}{3-2q+(q-1)N}$$
 $N' = N + 2/3$

Airton Deppman

Fractals in nature

Fractals in HEP

Non extensivity and fractality

NESC

Experimental verification of nonextensivity in HEP

NESCT and the hadronic fractal dimension

Conclusions

Partition function for a <u>nonextensive</u> ideal gas

PACS numbers: 05.70.Ce.95.30.Tg.26.60.-c

(6)

Airton Deppman

Fractals in nature

Fractals in HEF

Non extensivity and fractality

NESCT

Experimental verification of nonextensivity in HEP

NESCT and the hadronic fractal dimension

Conclusions

Hadronic Fractal Dimension

$$q=1.14$$
 and $au/T=0.32$

N = 2.3 and N' = 1.7

R = 0.104 and D = 0.69

Intermittency in rapidity distribution for pp: D = 0.43 - 0.65

Airton Deppman

Fractals in nature

Fractals in HEP

Non extensivity and fractality

NESCT

Experimental verification of nonextensivity in HEP

NESCT and the hadronic fractal dimension

Conclusions

Hadronic Fractal Dimension

$$q=1.14$$
 and $au/T=0.32$

N = 2.3 and N' = 1.7

R = 0.104 and D = 0.69

Intermittency in rapidity distribution for pp: D = 0.43 - 0.65PDF from NESCT coming soon

Airton Deppman

Fractals in nature

Fractals in HEI

Non extensivity and fractality

NESCT

Experimental verification of nonextensivity in HEP

NESCT and the hadronic fractal dimension

Conclusions

Microscopic origins of S_q

$$\Omega = \int_0^\infty \int_0^\infty AF^{\frac{3N}{2}} \exp\left(-\frac{F}{kT}\right) dF \left[1 + (q-1)\frac{\varepsilon}{k\tau}\right]^{\nu/(q-1)} d\varepsilon$$
$$\frac{\nu}{q-1} = \frac{1}{q-1} - \frac{3N}{2}$$

$$\Omega = \int_0^\infty \int_0^\infty AF^{\frac{3N}{2}-1} \exp\left(-\frac{F}{kT}\right) dF \left[1 + (q-1)\frac{\varepsilon}{k\tau}\right]^{1/(q-1)} d\varepsilon$$
$$\Omega_o = \int_0^\infty \int_0^\infty \exp\left(-\frac{F}{kT}\right) F^{3N/2} dF$$
$$\Omega = \Omega_o - \int_0^\infty A \exp\left(-\frac{F}{kT}\right) F^{\frac{3N}{2}-1} \times$$
$$\left[1 - \int_0^\infty \exp\left(-(q-1)\frac{\varepsilon}{Nk\tau}\frac{F}{kT}\right) [1 + (q-1)\frac{\varepsilon}{k\tau}\right]^{-\nu/(q-1)} d\varepsilon$$

29/31

dF

Airton Deppman

Fractals in nature

Fractals in HEP

Non extensivity and fractality

NESCT

Experimental verification of nonextensivity in HEP

NESCT and the hadronic fractal dimension

Conclusions

Microscopic origins of S_q

. .

Dashen, Ma, Bernstein (PR 187 1969):

$$\Omega = \Omega_o - \frac{1}{4\pi\beta i} \int_0^\infty \exp(-E/kT) \left(Tr S^{-1} \frac{\overleftrightarrow{\partial}}{\partial E} S \right)_C$$

Therefore:

$$\left(TrS^{-1}\frac{\partial}{\partial E}S\right)_{C} = 1 - \int_{0}^{\infty} \exp\left(-\frac{(q-1)\varepsilon}{Nk\tau}\frac{F}{kT}\right) \left[1 + (q-1)\frac{\varepsilon}{k\tau}\right]^{-\frac{\nu}{q-1}} d\varepsilon$$

Conclusions

Airton Deppman Fractals in nature

Fractal Aspects of Hadronic Interaction

Fractals in HEP

Non extensivity and fractality

NESCT

Experimental verification of nonextensivity in HEP

NESCT and the hadronic fractal dimension

Conclusions

- 1) Thermofractal structure + NESCT \rightarrow unified description of p_T distribution, hadron mass spectrum, intermittency.
- 2) The parameters T_o and q_o are the only free parameters that needs to be obtained from experimental data.
- 3) It is possible that PartonDistribution Functions can be connected with the thermodynamical theory as well.
- Contribution to the understanding of nonperturbative QCD through *S-matrix* connection.

Thank you