

13 TeV collisions

J/ψ and $\psi(2S)$ Production in p-Pb Collisions at 5.02 TeV with ATLAS

Will Brooks, for the ATLAS Collaboration

Seventh International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions

> McGill University June 2015

Motivations

nti-red

ti-red

colour-singlet state

colour-octet state

- Naïvely: "Cold Nuclear Matter effects as HI baseline"
- Now, numerous new insights:
 - \rightarrow J/ ψ production mechanisms
 - saturation scale in QCD

- shadowing + other modifications of gluon PDFs
- ightarrow absorption of the $Q\bar{Q}$ pair
- ➡ ion-direction observables vs. proton-direction

Method

- Measure dimuons
- Trigger: 1+ MU0 at L1; 2 muons > 2 GeV, full scan Event Filter
- Two largely independent analyses:
 - May 2015 J/ψ paper arXiv:1505.08141 [hep-ex]
 - → June 2015 J/ψ and ψ(2S) <u>ATLAS-CONF-2015-023</u>
- Separate prompt from non-prompt (b-quarks) J/ ψ and ψ (2S)
- Analysis ranges: 8.5 < pT < 30 GeV, |y*| < 1.94 (1.5)
- Perform weighted simultaneous fit to invariant mass and lifetime to subtract background, separate prompt/non-prompt charmonia
- Weights: L1 trigger, Event Filter, reconstruction efficiency, acceptance

J/ψ -only Analysis p+Pb at 5.02 TeV

May 2015 J/ψ paper - arXiv:1505.08141 [hep-ex]

 $d^{2}\sigma/dy^{*}dp_{T}$, prompt and non-prompt Non-prompt fraction vs. y* and p_{T} R_{FB} vs. y* and p_{T} , prompt and non-prompt

Differential production cross section vs. p_T J/ ψ in p+Pb, in ion beam direction

Differential production cross section vs. p_T J/ ψ in p+Pb, in proton beam direction

Comparison to FONLL (pp) calculation Nonprompt J/ ψ in p+Pb, in ion beam direction ¹

(1998) 007 [arXiv:hep-ph/9803400]; M. Cacciari, S. Frixione and P. Nason, JHEP 0103 (2001) 006 [arXiv:hep-ph/0102134].

Comparison to FONLL (pp) calculation Nonprompt J/ ψ in p+Pb, in proton beam direction

Comparison to FONLL (pp) calculation Nonprompt J/ ψ in p+Pb vs. y*

Nonprompt fraction for J/ ψ in p+Pb vs. p_T

Nonprompt fraction for J/ ψ in p+Pb vs. y*

Differential production cross section for prompt and nonprompt J/ ψ in p+Pb vs. y*

Will Brooks - J/ ψ and ψ (2S) Production in p-Pb Collisions at 5.02 TeV with ATLAS - Hard Probes 2015, McGill University, June 2015

Forward-backward ratio Nonprompt J/ ψ in p+Pb vs. p_T

$J/\psi + \psi(2S)$ Analysis p-Pb at 5.02 TeV

June 2015 J/ ψ and ψ (2S) - <u>ATLAS-CONF-2015-023</u>

d²σ/dy*dp_T, prompt and non-prompt, J/ψ and ψ(2S) pp interpolation to 5.02 GeV Non-prompt fraction vs. y* and p_T, J/ψ and ψ(2S) R_{pPb} vs. y* and p_T, prompt and non-prompt, J/ψ and ψ(2S) Single and double ratio, prompt J/ψ and ψ(2S)

Differential production cross sections Non-prompt $\psi(2S)$ and J/ ψ in 2.76 TeV p+p vs. pT

21

**

nonprompt fraction
$$(p_T, y_*) = \frac{N^{nonprompt J/\psi}(p_T, y_*)}{N^{total J/\psi}(p_T, y_*)}$$

Interpolation of pp data

Interpolation between pp at 2.76 TeV and at 7 and 8 TeV

Interpolation used three functional forms to evaluate systematic uncertainty

Check of centrality behavior by normalizing to number of Z bosons: N_ψ/N_Z vs. FCal E_T

 J/ψ appears to be flat

Decreasing trend for $\psi(2S)$

Check of centrality behavior using 'self-normalized ratios'

Ratio of prompt ψ (2S) to J/ ψ vs. FCal E_T

Evidence for centrality dependence E_{T}^{FCal} [GeV] Similar pattern as Z-normalized ψ (2S) Decreasing trend with centrality; magnitude > ALICE's

Prompt double ratio vs. FCal ET and y*

Shape in E_T is compatible with Z-normalized and R_{pPb} Clear enhancement at low FCal E_T , consistent with R_{pPb}

Conclusions

- Measurement of J/ψ and ψ(2S) production in p-Pb collisions at 5.02 TeV first precise quarkonia results from ion beams in ATLAS!
- Measured differential cross sections, R_{FB} for J/ ψ , R_{pPb} for J/ ψ and ψ (2S) via pp interpolation; nonprompt fraction, single and double ratios, for J/ ψ and ψ (2S)
- Separation: prompt and nonprompt (b) components
- Nuclear medium effects seen in a number of observables and hints in others - most prominently:
 - ➡ R_{FB} significantly larger than ALICE's (at forward y*)
 - → R_{pPb} >1 for J/ ψ and ψ (2S), ~all measured kinematics
 - → Double ratio of $\psi(2S)/J/\psi$ enhanced at low centrality

Additional slides

Acceptance of J/ ψ and ψ (2S) in ATLAS

ATLAS

1.2

Will Brooks - J/ ψ and ψ (2S) Production in p-Pb Collisions at 5.02 TeV with ATLAS - Hard Probes 2015, McGill University, June 2015

33

J/ψ in pA collisions

R_{pPb} close to unity at backward (Pb-going) rapidity CNM effects at mid- and forward (p-going) rapidity

ALICE ψ(2S) results (II) arXiv:1405.3796 [nucl-ex] JHEP 1412 (2014) 073

37

Elements in common:

- Same pPb data sample, same triggers, secondary dimuon vertex refitting
- Same muon selection criteria and reconstruction efficiency corrections
- \bullet Same version of J/ ψ acceptance map

Elements that are different:

- Included $\psi(2S)$ in fit model; fit model was kept as similar as possible to 7 and 8 TeV analyses to reduce interpolation uncertainties
- \bullet Included 2.76 TeV pp data for calculation of R_{pPb}
- Updated efficiency map from 8 TeV pp was used for L1 trigger correction
- Finer-binned Event Filter efficiency map was used
- Centrality dependence was studied using several centrality estimators

 J/ψ and Upsilon in pPb from LHCb

Will Brooks - J/ ψ and ψ (2S) Production in p-Pb Collisions at 5.02 TeV with ATLAS - Hard Probes 2015, McGill University, June 2015

 J/ψ in pPb from LHCb

Phenix/RHIC J/ψ

Definition of y*

$$y^* = -(y_{lab} + 0.465)$$
 p+Pb run period A
 $y^* = y_{lab} - 0.465$ p+Pb run period B

y* is defined as positive in the proton beam direction

44

Definition of pseudo-proper time

 $\tau = \frac{L_{xy}m_{\mu\mu}}{n_{\pi}^{\mu\mu}}$

where L_{xy} is the projection of the decay length on the transverse plane