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1 Introduction

In this document, we report the measurement of J/{ meson produced from pPb collisions at
VS = 5.02TeV, with the recorded integrated luminosity of 34.6 nb~!. J/§ mesons are re-
constructed via their decays into u* ™ pairs. For this analysis, non-prompt J/i from B hadron
decays have been separated from prompt J/¢ utilizing the reconstructed decay vertex of the
utu~ pair. Directly produced J/ip as well as those from decays of higher charmonium states
(e.g. ¢’ and x.) are considered prompt as their decay length is unmeasurably small compared
to those from B decays and are not distinguished in this analysis.

The differential cross sections of prompt and non-prompt J/¢ production are reported in center
of mass rapidity domains —2.87 < ycym < 1.93 and the transverse moementum pr < 30 GeV/c,
where “forward” regions (positive rapidity) are defined by the proton-going direction. Then
The asymmetry of yields in forward and backward rapidities, in the center-of-mass frame has
been measured within |ycp| < 1.93 to probe the cold nuclear matter effects. In addition, the
correlation between forward-to-backward ratio and the event-activity is evaluated to study the
dependence on impact parameter of collision.

The note starts with a description of the data selection in Section 2 and Section 3. The signal
extraction of J/ip are detailed in Section 4. In Sections 5 and 6 the acceptance correction and
the measurement of the efficiencies to reconstruction, identification and triggering on single
muons are described. The full correction factor and systematic uncertainties are summarized
in Section 7. Section 8 shows the results.
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2 3 Muon selection

2 Event selection

2.1 Datasets

The prompt reco datasets of proton lead collisions (pARun2013) namely /PAMuon/HIRun2013-
PromptReco-vl/RECO have been used in the analysis. The data have been reconstructed in
the CMSSW version CMSSW _5_3_8_HI _patch2 with global tag GR_P_V43D::All. Since the 1st
7 runs (run numbers 210498-210658) are mis-aligned, the reprocessed reco datasets have been
used with global tag GR_P_V43F::All. All events in this dataset were selected by the muon trig-
ger HLT_PAL1DoubleMuOpen_v1 trigger, an online hardware-based trigger system requiring
two muon candidates in the muon detectors with no explicit momentum or rapidity thresh-
olds. The trigger condition was kept unprescaled during the whole run. The data were then
skimmed for events with two tracker muons with an invariant mass of more than 2 GeV/c 2. All
charge combinations have been considered in the pairing. The skimming and the root tuples
were created using the BPH onia software for these tasks.

The proton lead sample comprises two subsets: one corresponding to Pb going to +z direction(
run numbers 210498 to 211256 and integrated luminosity 20.7 (nb)~!) and one corresponding
to Pb going to the -z direction (run number 211313 to 211631 and integrated luminosity is 14.0
(nb)~!). In the analysis, “"forward” regions (positive rapidity) are defined by the proton-going
direction. Data from two different directions are fitted separately for the signal extraction and
then merged after respective acceptance and efficiency corrections. Bookkeeping of the files is
done at

https:/ /twiki.cern.ch/twiki/bin/view /CMS/HIOnia2MuMuSkimProcessingDetails2013.

3 Muon selection

The analysis starts with producing the Onia2MuMu skim, which contains all pairs of tracker
muons with an invariant mass larger than 2 GeV/c 2. All charge combinations are considered
and all possible combinations within an event are kept. The package that was used for the
skimming can be found in CVS under CMSSW /tdahms/Onia2MuMu and is the same used in
the BPH group for similar analyses. Starting from this skim, a TTree is filled with single muons
within a defined acceptance, and muon pairs that pass quality criteria to reject the background
of fake muons while keeping the efficiency of selecting real muons high.

3.1 Muon reconstruction

Muon candidates used in this analysis are accepted only if they belong to the following kine-
matic regions which will be revisited in sections 5 :

'] <13 — ph>33GeV/c (1)
13< |yt <22 — p">29GeV/c )
22< || <24 — ph>08GeV/c (3)

The muon candidates are further selected if reconstructed as tracker muons, and pass the ‘soft
muon ID’ selection, as defined by the Muon POG

https:/ /twiki.cern.ch/twiki/bin/view /CMSPublic/SWGuideMuonld.

The complete list of all the cuts applied on muons and dimuons is the following :

e the number of valid tracker layers > 5, indicating how good the inner track part of
the track is;
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3.2 Muon quality cuts and single muon kinematic variables 3

the number of pixel layers with valid hits > 0;

the track high purity flag to rejects bad quality tracks, basically just few outliers;

the distance between the event vertex and the muon track in the transverse plane,
Dy, < 0.3 cm, and the longitudinal plane, D, < 20.0 cm;

the probability of two tracks to belong to the same decay vertex > 1%;

Tracker muon arbitration is done (resolves ambiguity of sharing segments, picks best
based on matching based on position and pull cuts);

e TMOneStationTight (requires one well matched segment in the muon stations for
the track);

e opposite sign muons.

3.2 Muon quality cuts and single muon kinematic variables
3.2.1 Distribution of muon quality variables in MC and data

In this section we compare data and MC distributions for single muon quality cut variables
as shown in 1, 2. Muons coming from the MC prompt J/i sample produced in the first run
configuration are shown in green histograms while muons from data (first run period) falling
in the mass range [2.95,3.25] are shown with red points. It is important to note that in the
following we are comparing a pure MC prompt ]/ signal to a contaminated J/i signal form
data where a cut on ct < 50 ym is applied in order to remove the non-prompt contribution
form data. For each variable plotted all other cuts were applied, as given in Table 1, except for
the cut on the variable shown. All of the variable distributions are normalized to have area of
unity. For most of the muon Identification variables, within the cut region, the muons from the
]/ signal region (red points) match the distributions from MC J/¢ (green histogram) except
for the number of the tracker layers. The discrepancy between Data and MC for the number
of tracker layers and for the number of pixel hits cannot be explained only by the background
present in Data and absent in MC.

Table 1 summarizes the values of the cuts for the analysis and the percentile of signal in simu-
lation removed independently by each cut in the third column and after all the other cuts are
applied.

Table 1: Quality cuts applied to tracker muons

Cut variable Cutvalue Only thiscut All except this cut

#tracker layers > 5 98.21% 88.43%

#pixel hits >1 92.46% 93.76%

X3 erTrace/ MAOf < 1.8 98.00% 88.72 %

ldyy| <3 99.99 % 87.04 %

|d.| <30 99.99 % 87.04 %

vertex probability > 0.01 97.27 % 89.15 %
All cuts applied 87.03 % %

3.2.2 single muon kinematic variable distributions

Although the background contamination is present in the data sample we compare the kine-
matic distributions of single muons from Data and MC as shown in 3.
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Figure 1: Single tracker muon quality distributions, from MC J/i signal events (green his-
togram) and from the data (red points). All other cuts are applied to the muons but the one
displayed. The histograms are normalized to unity. The horizontal dashed lines indicate the
cuts region considered (Linear scale on the right and Log scale on the left). Here are shown the
number of tracker layers, number of pixel hits and the 2 for inner tracks distributions.
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Figure 2: Single tracker muon quality distributions, from MC ]/¢ signal events (green his-
togram) and from the data (red points). All other cuts are applied to the muons but the one
displayed. The histograms are normalized to unity. The horizontal dashed lines indicate the
cuts region considered (Linear scale on the right and Log scale on the left). Here are shown d,,,
d, and the z vertex probability distributions
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4 Signal extraction
4.1 Inclusive Jip

The invariant mass spectrum of y*y~ pairs is shown in fiqure 4 in the region of 2.6 < m, <
3.5 GeV/c? with the transverse momentum pr < 30 GeV/c and center-of-mass rapidity —2.87 <
yem < 1.93, which corresponds to —2.4 <y, < 2.4 in the detector frame, after applying
the single muon quality requirements. No minimum pair-pt requirement has been applied
explicitly in this plot. In this integrated kinematic regions, 123114 + 444 dimuon pairs are
selected for the 1st run, and 84014 + 370 pairs for the 2nd run. In the actual anaylsis with
binning in pr and rapidity, we have applied the lower limit of pr > 6.5 GeV/c for the mid-
rapidity regions because of the detector coverage. More details can be found in the acceptance
section 5.

The black curve is an extended (the number of signal and background are directly calculated)
unbinned maximum likelihood fit to the y*u~ pair spectrum with the sum of a Crystal Ball
and a Gaussian functions for the signal, with common mean, my, and independent widths,
ocp and 0G5, and an exponential for the background. The Crystal Ball function combines a
Gaussian core with a power-law tail, described by exponent the 1, to account for energy loss
due to final-state photon radiation:

N (m—mo)2> m—myg .
Jinocs ex (—72 , for o TN
fCB(m) =

n 2 —n
_N (n N (n g —memg m=my o~ _
V2mocy (W) exp( 2 >(|0¢| a‘ OCB / for ocp — ¢

The parameter a defines the threshold, in units of ocp, between the Gaussian and the power-
law functions.

(4)
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Figure 4: Invariant mass spectrum of pi* 1~ pairs (black circles) in the region of —2.87 < ycm <
1.93 and pr < 30 GeV/c for the 1st run(Left) and the 2nd run period(RIGHT).

In order to study the pr and y dependence of cross-section and Rrp measurement, the results
were split in several bins of the ]/ pt and rapidity. For each measurement, bins are selected
according to statistics.

Rapidity binning is as following :
Yem = [—2.87,-2.4,-1.93,-1.5,-0.9,0,0.9,1.5,1.93]
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8 4 Signal extraction

Considering the rapidity shift due to the energy asymmetry between proton and Pb ion, ycm
corresponds to

yist = [—2.4,-1.97, —1.37, —0.47,0.43,1.03,1.46,1.93,2.4]

y2l — [2.4,1.97,1.37,,0.47, —0.43, —1.03, —1.46, —1.93, —2.4]

in the lab frame for the 1st run and 2nd run respectively, ordering from the forward to backward
rapidity.

For the forward and backward rapidity, the CMS acceptance extends to lower pr, so pt binning
is as following :

For 1.5 < yem < 1.93 and —2.87 < yom < —2.4, pr = [0,3,4,5,6.5,7.5,8.5,10,14,30] GeV/c.
For 0.9 < ycy < 1.5 and — 24 < yey < —1.93, pr = [3,4,5,6.5,7.5,8.5,10,14,30] GeV/c.
For —1.93 < ycym < —1.5, pr = [5,6.5,7.5,8.5,10,14,30] GeV/c.

For — 1.5 < yem < 0.9, pr = [6.5,7.5,8.5,10,14,30] GeV/c.

These values allow a better comparison with the low-pr measurements of the ALICE experi-
ment, which has acceptance for J/i with pr > 0GeV/c for the rapidity intervals |ycpm| < 0.9
and 2.4 < |ycm| < 4.0, in the electron and muon decay channels, respectively [1].

For the Rrp measurement, ycy ranges are restricted to be symmetric as \yCM| < 1.93. pr
binning is
For 1.5 < |ycm| < 1.93, pr = [5,6.5,10,30] GeV/c.
For \yCM] < 1.5, pr = [6.5,10,30] GeV/c.

The dependency of Rrp with respect to event-activity variable E?FW|>4, the transverse energy

deposited in forward hadronic calorimeterin4 < || < 5.2, also has been measured. Three bins

of E? FI1>4 has been determined so that bin boundaries are consistent with other pPb analysis.

EHFII=4 — 0,20,30,120] GeV

We give two reasons for the choice of the upper bound of the pr value at 30 GeV/c. First, it
will allow us the direct and unambiguous comparison with PbPb analysis by using exactly the
same cut. Second, the number of dimuons lost by this cut is not large, as it is illustrated in
Fig. 5, where the raw counts of all dimuons versus their pr, and 2-dimensional plots for the
invariant mass vs pr are shown. For the fitting, not only the yields in the mass regions [2.95-
3.25] GeV /2, but also the yields in the side-band regions are needed to get the /; sy distributions
of the background. Therefore, in order to get a stable statistics also for the background, we have
selected the wider range for the highest pr bins.

The extended unbinned maximum likelihood fit with the sum of Crystal Ball and Gaussian
functions has been performed in each bins. For all the pr, v and event activity binning, all
parameters of the fit are left free except for the resolution model for the lifetime distribution
of prompt J/i which are extracted from prompt MC sample. More details on fitting procedure
will be elevated in the following section.
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Figure 5: u*p~ pairs raw counts versus pr (Left) and invariant mass vs pr (Right) in —2.87 <
ycM < 1.93 for the 2nd run. before separating signal J/¢ dimuons from the background.

4.2 Prompt and Non-prompt J/ip
4.2.1 Yield extraction

The identification of ]/ mesons coming from b-hadron decays relies on the measurement of a
secondary i~ vertex displaced from the primary collision vertex. The displacement between
the ™y~ vertex and the primary vertex 7 is measured in the plane transverse to the beam
direction. The most probable transverse b-hadron decay length in the laboratory frame [2, 3] is
calculated as
ATc—1=2
gL 5)
'S~
where i is the unit vector in the direction of the J/i meson pt and S is the sum of the primary
and secondary vertex covariance matrices. From this quantity (which is the projected decay
length of the ]/ on transverse plane), the pseudo-proper decay length ¢, = Ly, my,/ pr is
computed as an estimate of the b-hadron decay length.

ny

To measure the fraction of non-prompt J/¢ (the so called b-fraction), the invariant-mass spec-
trum of p* ™ pairs and their ¢;,, distribution are fitted in a two-dimensional, extended un-
binned maximum likelihood fit, in bins of pr, rapidity and event activities. In this fit, the
fraction of non-prompt J/¢ is a free fit parameter. The 2D fit is a simultaneous way to take
correlated probability between dimuon mass and pseudo-proper decay length into account
properly [4]. For example, a event lying on the sideband region will not have high probability
to be a prompt or non-prompt J/ip. This probability calculation cannot be performed on each
event without considering dimuon mass and pseudo-proper decay length at the same time.

The fitting procedure is similar to the one used in the pp analysis at /s = 7 TeV [5] and PbPb
analysis at /s = 2.76 TeV [6]. Prompt J/ip are produced at the primary vertex; therefore their ob-
served displacement is described only by the resolution function. This resolution is described
by a function that depends on the “per-event error” of the measured ¢y, i.e. the uncertainty on
the fj;, reconstructed each event, as determined from the covariance matrices of the primary
and secondary vertex. These errors affect on the width of resolution function more precisely,
hence the parameterization is quite improved with this technique.

The expression for the total PDF (probability density function) F({}y, m,,), the functional form
used for the 2D fit including per-event-uncertainties, are defined as :
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Figure 6: The distributions of lifetime errors in kinematic ranges —2.87 < ycp < 1.93 and pr <
30 GeV/c for the 2nd run period. Blue open points represent the distributions for backgrounds
Dpig(07). Red closed points represent the distributions in mass range [2.9 — 3.2] GeV/c?. and
green closed points indicate Dg;, (07), that is used in fitting procedure, after subtracting scaled

DBkg (UZ)'

F(lyyp,myy) = /[fSig - Dsig(0¢) Fsig (439, 0¢) - Msig(myy) +
(1~ fsig) - Dpig(00) Fakg (€59, 0¢) - Mprg (1) doy, (6)
where:
Fsig,prg (Lyp: 00) ZF sig.nkg (Grp) @ Ri(lypp — by |1, 5i00), 7)
with

1. s; the weighting (uncertainty) of each point in the resolution distribution, due to the con-
sideration of the per-event-uncertainties. It modifies the shape of the resolution function
(its width), but not its mean.

2. Dpyyg,sig(07) are the distributions of the errors (as they are calculated event-by-event), sep-
arately for signal and background. D Bkg(O'g) is assumed uniform over the whole mass re-
gion, [2.6-3.5] GeV /2. Ds;q(0v) is obtained from /y, distribution within the mass signal
region [2.9-3.2] GeV/¢?, after subtracting scaled Dpig(07)-

No fit is performed to Dpy, si¢(0¢) distributions; instead, they are multiplied with the prompt,
non-prompt and background ¢j, distributions, and then converted to PDFs with a suitable
binning in the /j,, variable. The binning of D Bkgrsz'g((fg) should not be too fine, otherwise there
would be empty bins in the PDFs due to the lack of statistics and it cause a failure of the fit.
Binning should not be too coarse either, as it affects the quality of the fit. There is no general
recipe for deciding on the binning. Figure fig:cterr shows the distributions of life time errors

Dpkg,sig(07)-

With the complete formula, the 2D unbinned maximum likelihood fit is performed in 5 steps
as listed below.
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247 1. From dimuon mass distribution (the projection of the 2D PDF), get the yield of signal

248 (inclusive, prompt and non-prompt J/) and background. For the whole pr, rapidity and
249 event-activity bins, all the parameters related to mass distributions (parameters for the
250 sum of Gaussian and Crystal Ball functions for signal, and an exponential function for
251 backgrounds) are free and determined in this step.

252 2. Non-prompt ]/ MC template is used to constrain the ¢;, of B to J/ip. Lifetime of B hadron

253 can be ideally described by one exponential function but there is an additional resolutions
254 when it decays into J/¢. Therefore, for lifetime distribution of non-prompt J/i, we use
255 the convolution of one resolution function and one Gaussian. Slope of the exponential
256 function is estimated but this value is only used as a initial value and determined in the
257 last step. Parameters related to the resolution functions are fixed to MC templates.

258 3. The prompt J/¢ {j;, function parameters are initialized based on the prompt ]/ MC

259 template. Since the per-event-error method is used for this analysis, prompt ]J/{ pseudo-
260 proper decay length can be described with sum of 2 Gaussian functions. One of them
261 describes most of the parts and the other Gaussian takes the tail components. Fraction of
262 the two Gaussian and narrower width of one Gaussian are fixed by MC, and wider width
263 of another Gaussian will be left free and determined in the last step of fitting.

264 4. The background parameters of /j, are determined with the mass sideband regions: [2.6-
265 2.9] and [3.2-3.5] GeV/c?. Combination of exponential decay functions with 3 different
266 slopes are used for {5, background function. Their slopes are determined in this step.

267 5. With the pre-fitted setting of the parameters, the total PDF is fit over all dimuons, to get

268 the B-fraction. In summary, B-fraction, the slope of non-prompt J/¢ lifetime, and wider
269 width of resolution model is determined at this last step. Non-prompt J/¢ yields are
270 calculated by multiplying the B-fraction with the inclusive yields.

271 Example of 2D fits are given in Fig. 7, for the 1st run period. For the 2nd run period, Example
272 of 2D fits are given in Fig. 8. Plots for the whole bins can be found in appendix A.

273 Also, information of all the fit parameters for each bins is reported in more details in appendix
274 D.

275 4.2.2 Systematic Uncertainties

276 To estimate the systematic uncertainty due to fitting procedure, alternative fit functions have
277 been considered for the mass and lifetime distributions [6]. The differences compared to the
278 nominal method are taken as the systematic uncertainties. The detailed sources of the system-
270 atic uncertainty include the followings:

280 e Variation of the signal lineshape in the dimuon mass distribution: single Crystal Ball
281 function is considered and compared to the nominal model that uses the sum of a
262 Crystal Ball and a Gaussian function.

283 e Variation of the background fit function in the dimuon mass distribution: the straight
284 line is tested and compare to the nominal one exponential function.

285 e Resolution model for the lifetime of prompt J/i: the nominal double-Gaussian shape
286 for the pseudo proper decay length per-event resolution is compared to single Gaus-

287 sian shape to estimate the effect of the tail components.
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Figure 7: Invariant-mass spectra (left) and pseudo-proper decay length distributions (center,
right) of u"u~ pairs for the most forward rapidity —2.4 < y;, < —1.97 with 3 < pr <
6.5 GeV/c (top) and the mid-rapidity bin —0.47 < vy, < 1.97 with 14 < pr < 30 GeV/c
(bottom) from the 1st run period. The projections of the two-dimensional fit onto the respec-
tive axes are overlaid as solid black lines. The dashed red lines show the fitted contribution of
non-prompt J/ip. The fitted background contributions are shown as dotted blue lines.

e B lifetime model: alternative B lifetime model used in Ref. [7], based on MC tem-
plates is tested and the difference in the fitted non-prompt fraction is taken as the
systematic uncertainty.

All the case are summed in quadrature to estimate systematic uncertainties of the J/¢ yields
and they vary from 0.6% to 3.5% for prompt J/ip component and up to 5.9% for non-prompt
component. Table 2 and table 3 show the raw yields of prompt /i extracted from the nominal
titting and 4 other options, and consequent values of the systematic uncertainties with the
binning of cross-section measurement.
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Figure 8: Invariant-mass spectra (left) and pseudo-proper decay length distributions (center,
right) of ™y~ pairs for the rapidity bin —1.03 < y,, < 0.73 with 6.5 < pr < 10 GeV/c(top)
and the rapidity bin 0.47 < y;,, < 0.97 with 10 < pr < 30 GeV/c(bottom) from the 2nd run
period. The projections of the two-dimensional fit onto the respective axes are overlaid as solid
black lines. The dashed red lines show the fitted contribution of non-prompt J/¢. The fitted
background contributions are shown as dotted blue lines.
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4.2 Prompt and Non-prompt J/¢
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5 Acceptance

For the calculation of the acceptance, same acceptable range of single muon as pp collision is
used [????] because pp reconstruction algorithm is applied for pPb data reconstruction. For the
J/i analysis at pPb collision, Monte Carlo samples with boosting at /s, = 5.02 TeV are gen-
erated for prompt and non-prompt J/i using PYTHIAG6 ver. 6.424 [7]. Samples for prompt and
non-prompt J/¢ are independently produced applying D6Ttune and Z2StarTune respectively.
The rapidity boosting in MC samples is -0.465 and this is equivalent to the 1st run period in
which proton bunch is going to the negative 7, region. (7cpm = — (1.5 + 0.465)) Since the
acceptance is not affected by detector performance, we have estimated the acceptance values
using samples equivalent to the 1st run period, and flipped the rapidity sign for the 2nd run
period. The Prompt J/i sample is generated assuming no decay polarization, and the non-
prompt J/ip sample includes the polarization determined by the sum of the exclusive states
from EVTGEN]8]. In addition during the generation of the event, any filter which can limit the
eta or pr range of muons is not used because filtered event can distort the denominator of the
acceptance value.

5.1 Method

We call dimuon signal acceptance «, the fraction of dimuon signal, within a restricted mass in-
terval M1 that is considered detectable and reconstructible in the CMS detector, but as stated
above, with rapidity domain —2.87 < |ycp| < 1.93.

i
X = Nrezggil;ggfuctible,Ml (PT/ y) (8)

dimuon
Ngenemted (pT’ y)

dimuon ; ; ; ;
where N ITOE ipe v 1S the number of generated events in the Monte Carlo simulation, de-

clared detectable in a given (pr, ¥) bin and within a mass interval M1 ([2.6,3.5] GeV/ c? for J/i)
expressed in terms of the dimuon variables, and Ng;%‘fa’}gd represents all dimuons generated

within the muon stations coverage of the CMS detector.

We declare a muon to be detectable/reconstructible if its reconstruction efficiency is higher than
10%. This definition is founded as the standard kinematic limit for tracker muons by pp recon-
struction. The cuts in single muon pr and # defined like below.

In#| <13 — ph>33GeV/c 9)
13 < |yt <22 — pt>29GeV/c (10)
22 < |yt <24 — pk>08GeV/c (11)

5.2 Results

Figure ?? presents the generated prompt and non-prompt J/¢ in Monte-Carlo simulation, which
are used as the denominator of the acceptance calculation, as a function of pr and rapidity of
J/¢ in the laboratory frame of the 1st run period. Figure 10 shows J/¢ that pass the single
muon acceptance cut, and therefore correspond to the numerator of the acceptance. The ac-
ceptance of prompt and non-prompt J/4 as a function of dimuon pt and rapidity are shown in
figure 11 with fine-grained binning, and in figure 11 with the binning for the analysis. Dashed
line indicates the actual kinematic ranges actually considered in the analsysis.
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Figure 9: Generated prompt(left) and non-prompt(right) J/ip which correspond to the denom-
inator of the acceptance, as a function of pr and vt of J/.
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Figure 10: Generated prompt(left) and non-prompt(right) J /¢ after single muons kinematic cut
is applied, as a function of pr and y;5t of J/.
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Figure 11: Acceptance of prompt(left) and non-prompt(right) J/i in fined-grained pr and y,.
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Figure 12: Acceptance of prompt(left) and non-prompt(right) J/¢ in pr and y;,, bining used
in the analysis. Dashed line indicates the actual kinematic ranges actually considered in the
analsysis.



5.2 Results

The differential acceptances as a function of rapidity ycym for different pt ranges, and as a
function of p for different ycp ranges, are shown in fig 13 for prompt J/4 and fig 14 for non-

prompt J/1.
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Figure 13: Binned acceptance of prompt J/i.
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Figure 14: Binned acceptance of non-prompt J/ip. Left: as the function of pr; as the function of
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5.3 Systematic uncertainties

Since the acceptance correction factors are fully obtained from MC, possible differences be-
tween MC and data are considered to estimate the systematic uncertainty. First, the distribu-
tion shape of pr and rapidity in MC and data was different as shown in Section 9.3. The toy
MC test has been performed to apply this discrepancy in order to inspect the propagated vari-
ance of acceptance values. With different generator tuning, initial and final state effects could
be considered as one of the sources of discrepancy. But in this study we assume all the effects
from various sources are mixed and reflected with the discrepancy, so we don’t consider the
contribution of each source.

The study is performed with following steps.

e Get ratios of normalized and uncorrected yield between data and MC with pr and
y binning for prompt /¢ and non-prompt J/i. And then fit them with appropriate
functions as shown in Figure 15 and Figure 16.

e Divide each pt bin in 5 small bins to get fine binning than the current analysis bin-
ning and set the content as ratio from the fit function.

e Generate toy ratio by gaussian distribution in order that mean and sigma of the
gaussian is above ratio from fit function and its relative statistical error, respectively.
Those randomly generated ratios could be weighted to the Monte-Carlo and we can
get the toy acceptance. Repeat that process 5k and then 5k acceptance distributions
would be generated. Plots for the acceptance distributions for prompt J/i in each pr
and rapidity bins, and that of non-prompt can be found in appendix D.

e From the set of acceptance in each pr and y bin, the largest differences in acceptance
values between the nominal one and distribution are quoted as the systematic un-
certainty. The results are shown in table 10-11 for prompt J/i and table 12-13 for
non-prompt J/ip with binning for cross section measurement.

2 T T T T T
18 - 18fF - 18fF b 18F
o« Prompt o w ®
16 240<y <-1977 16f 197<y <1377 16f 137<y <0474 16fF 047<y <043 4
e e e e

atio
atio
atio
atio

06F 4 06 4 06 - 06F
04F 4 04fF 4 04 b 04F

0.2F 4 02fF 4 02fF b 0.2F

1 1 1 1 1 o 1 1 1 1 1 o 1 1 1 1 1 o 1 1 1 1 1
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30

P, (GeVic) P, (GeVic) P, (GeVic) P, (GeVic)

Ratio
atio
atio

Ratio

& 18fF

©18F 1
16F 146<y <193 7 16F
e

16F

193<y <240 ]

14F 14F

12F 12F

08fF 08fF

06F 4 06 4 06fF - 06F
04F E 04F E 04 E 04F

0.2F E 02F E 02F B 0.2F

1 1 1 1 1 o 1 1 1 1 1 o 1 1 1 1 1 o 1 1 1 1 1
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30

P, (GeV/c) P, (GeVic) P, (GeVic) P, (GeVic)

Figure 15: Ratio (DATA/MC) distributions for prompt J/¢ of the 1st run period as a function
of pr in different rapidity ranges
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Table 10: The acceptance systematic values which make largest difference between nominal
value and distribution and its relative errors [%] are shown as a function of pr and rapidity for

the prompt J/1.
yem(J/)| pr(J/p) [GeV/c] Default Max Dist. Val rel.err [%]

0.0< pr <30 0.184 0.186 0.012

15 <yem <193 30<pr<40 0178 0177 0.337
40< pr <50 0.197  0.196 0.406

50< pr <65 0.236  0.235 0.339

6.5<pr <75 0.301 0.304 0.796

75< pr <85 0.348 0.344 1.265

8.5 < pr <10.0 0427 0423 1.030

10.0< pr <14.0 0.466  0.460 1.286

14.0 < pr <30.0 0.622  0.639 2.799

3.0< pr <40 0.236  0.235 0.297

09 <ycm <15 40<pr <50 0.293  0.293 0.273
50< pr <65 0.395 0.393 0.279

6.5< pr <75 0.522  0.521 0.249

75< pr <85 0.591  0.590 0.271

8.5 < pr <10.0 0.646 0.644 0.340

10.0< pr <14.0 0.700 0.698 0.328

14.0 < pr <30.0 0.820 0.826 0.744

6.5< pr <75 0.257  0.255 0.429

0.0 <ycm <09 75< pr <85 0.351  0.349 0.342
8.5 < pr <10.0 0423 0421 0.378

10.0< pr <14.0 0.517  0.515 0.329

14.0 < pr <30.0 0.669  0.664 0.762
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Table 11: The acceptance systematic values, continued with table 10

yem (/)| pr(J/¢) [GeV/c] Default Max Dist. Val rel.err [%]
6.5<pr <75 0.094 0.092 2.654
—09<yem <00  75<pr<85 0204 0202 1.079
8.5< pr <10.0 0297  0.295 0.639
100< pr <140 0436 0.434 0.413
14.0< pr <30.0 0593 0.587 1.079
6.5<pr <75 0.176  0.174 1.024
-1.5<ycm < 09 75 < pr <85 0.258  0.256 0.929
8.5 < pr <10.0 0.360  0.358 0.584
10.0< pr <14.0 0460  0.456 0.739
14.0 < pr <30.0 0.662 0.672 1.495
50< pr <65 0275  0.273 0.835
1983 <ycm < —-15 65<pr<75 0406  0.404 0.443
75 < pr <85 0476  0.473 0.609
8.5 < pr <10.0 0.527  0.523 0.777
10.0< pr <14.0 0.618 0.613 0.809
14.0 < pr <30.0 0.691 0.677 2.084
3.0< pr <40 0.259  0.259 0.270
24 <ycm < —-193 4.0<pr <50 0.307  0.306 0.261
50< pr <65 0.422  0.420 0.356
6.5< pr <75 0.518 0.516 0.290
75< pr <85 0.582  0.585 0.447
8.5 < pr <10.0 0.658 0.654 0.517
10.0< pr <14.0 0.747  0.743 0.496
140< pr <300 0.835 0.822 1.545
0.0< pr <3.0 0.196  0.199 1.786
=287 <ycm < —24 3.0< pr <4.0 0.188 0.187 0.426
4.0< pr <50 0216  0.215 0.509
5.0< pr <6.5 0.258  0.257 0.464
6.5<pr <75 0324 0.320 1.205
75<pr <85 0391 0.39 1.177
8.5 < pr <10.0 0.447 0.454 1.522
10.0< pr <14.0 0.532  0.523 1.674

14.0 < pr <30.0 0.640 0.618 3.375
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Table 12: The acceptance systematic values which make largest difference between nominal
value and distribution and its relative errors [%] are shown as a function of pr and rapidity for

the non-prompt J/¢.
yem(J/)| pr(J/p) [GeV/c] Default Max Dist. Val rel.err [%]

0.0< pr <30 0.191 0.193 1.047

15 <ycm <193 30<pr<40 0180 0.178 0.944
40< pr <50 0.195 0.193 1.181

50< pr <65 0.260  0.258 1.037

6.5<pr <75 0.305  0.300 1.867

75 < pr <85 0.360 0.352 2.303

8.5 < pr <10.0 0.409 0417 2.129

10.0< pr <14.0 0.512 0.505 1.444

14.0 < pr <30.0 0.602 0.618 2.759

3.0< pr <40 0241  0.239 0.872

09 <ycm <15 40< pr <50 0.295 0.294 0.643
50< pr <65 0.411  0.409 0.462

6.5<pr <75 0.530 0.527 0.453

75 < pr <85 0.601  0.597 0.549

8.5< pr <10.0 0.673  0.676 0.535

10.0< pr <14.0 0.735 0.732 0.395

14.0 < pr <30.0 0.808 0.813 0.681

6.5<pr <75 0.269  0.266 1.117

0.0 <ycm <09 75 < pr <85 0.346 0.343 0.838
8.5 < pr <10.0 0.416 0.413 0.697

10.0< pr <14.0 0.553  0.556 0.542

14.0 < pr <30.0 0.701 0.697 0.514

6.5<pr <75 0.096  0.093 3.439

—09<ycm <00 75<pr <85 0.212  0.208 1.891
8.5 < pr <10.0 0.301  0.298 0.963

10.0< pr <14.0 0.461  0.458 0.607

14.0 < pr <30.0 0.654  0.650 0.703
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Table 13: The acceptance systematic values, continued with table 12.

yem (/)| pr(J/¢) [GeV/c] Default Max Dist. Val rel.err [%]

6.5<pr <75 0.175 0.170 2.692

—15<yecm<—09 75<pr<85 0261 0256 1.727
8.5< pr <10.0 0349 0.344 1.459

10.0< pr <14.0 0.465 0.469 0.816

140<pr <300 0.631 0.624 1.030

50< pr <65 0292 0.284 2.706

193 <yem < —15 65<pr<75 0408 0401 1.740
75 < pr <85 0.447  0.440 1.455

8.5< pr <10.0 0.561  0.569 1.391

10.0< pr <14.0 0.649 0.655 1.048

14.0 < pr <30.0 0.743 0.732 1.494

3.0< pr <40 0.252  0.249 1.033

24 <ycm < —-193 4.0<pr <5.0 0.298  0.295 0.941
50< pr <65 0394 0.390 0.863

6.5< pr <75 0.528  0.523 0.965

75< pr <85 0.609  0.603 0.952

85<pr <10.0 0.652  0.659 1.027

10.0< pr <14.0 0.735  0.729 0.830

14.0 < pr <30.0 0.850  0.838 1.424

0.0< pr <3.0 0.203  0.206 1.032

=287 <ycm < —24 3.0< pr <40 0.195 0.193 1.026
4.0< pr <50 0.210 0.213 1.425

50< pr <65 0.275 0.271 1.310

6.5< pr <75 0.327 0.313 4.342

75< pr <85 0.396  0.408 3.084

8.5 < pr <10.0 0.444 0433 2412

10.0< pr <14.0 0.581  0.569 2.099

14.0 < pr <30.0 0.678  0.701 3.423
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Since the acceptance correction factors are fully obtained from MC, possible differences be-
tween MC and data are considered to estimate the systematic uncertainty. First, the distribu-
tion shape of pr and rapidity in MC and data was different by 18% and 14% respectively as
shown in Section 9.3. The pr and rapidity shapes of the generated MC distributions are varied
linearly by +18% and £14% over the range —2.87|ycp| < 1.93 and 0 < pr < 30GeV/c and il-
lustrated in figure 17 and figure 18 for prompt J/ip. The largest differences in acceptance values
between the nominal one and each cases are quoted as the systematic uncertainty.

Furthermore, the effect of the decay polarization was studied. In the nominal prompt MC sam-
ple, there is no polarization in the decay angle, while previous experimental results indicated
reported non-zero values [9]. The toy MC test has been performed to include polarization by
the previously measured amount [9] in order to inspect the propagated variance of acceptance
value. We varied Ag = —0.03 and +0.23 in Helicity frame based on pp analysis results as shown
in figure 19. Variation of the raw distributions is 7.5%, so we concluded the effect of the polar-
ization can be covered by the artificial variation above and didn’t include into the systematic
uncertainties explicitly.
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Figure 17: Raw distribution of prompt ]/ Monte-Carlo sample with variation of pr shape
by +18%. pr distributions with linear scale(left), log scale(middle) and rapidity distribu-
tion(right).
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Figure 18: Raw distribution of prompt ]/ Monte-Carlo sample with variation of y shape
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The results for each ycpr and pr bins are shown in table ?? and ?? with binning for cross-section
measurement, in table ?? and ?? with binning for Rrp measurement, and in table ?? and ??with
binning for Rrp measurement with event-activity dependence.
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s 6 Efficiency

s77 - This chapter discusses the calculation of the efficiency correction factors introduced by trigger,
a7s  tracking and muon ID cuts. The primodial efficieincy was computed by dividing the number
7o of reconstructed di-muon pairs by generated ones in MC samples (Section 6.1). Then the sec-
ss0 ondary correction based on data-driven single muon reconstruction efficiency was applied to
ss1 account the discrepancy of detector response in MC and real data ( 6.2).

2 6.1 Dimuon efficiency from Monte Carlo sample
83 6.1.1 Method

s8¢« Dimuons generated with realistic PYTHIA are reconstructed with the pp reconstruction algo-

sss  rithm in CMSSW_5_3_8_HI environment using the global tag STARTHI53_V27::All. The Monte-

sss Carlo samples were produced centrally and the location is /evraias_sesimitnrsr_tunener_stevoz/tdanms-oniazmam_
387 Jpsi_HiWinterl3-pa STARTHI53_V25-v1-68bf48ad9e3ccdbfIaasb3fd783a356e/USER for the prompt ]/l/] and /pv1a1a6_inciBropsiMuM_
388 5TeV02/tdahms-Onia2MuMu_InclB2Psi_HiWinterl3-pa_STARTHI53_V25-v1-68bf48a49e3ccdbf9aadb3fd783a356e/USER fOI‘ the non prompt
a0 J/1p. Generated MC samples are boosted in negative rapidity direction by 0.47 rapidity units

s  as expected in the 1st run period of the p+Pb collsion system. The samples for the 2nd run are

301 boosted in the oppsite directions.

sz In order to get enough statistics, single muon kinematic filters are applied when we generte the
ses  official Monte-Carlo samples. This pre-filter is looser than the single muon kinematic cuts that
s is actually used in the analysis and illustrated in figure 20.
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Figure 20: pr — 1 phase space of the single muons kinematic cut actually used in the analysis

(red) and pre-filter cut for the Monte-Carlon sample generation (blue).

ss  The peak counting method consists of estimating the reconstruction efficiency making the ratio
a6 of the number of signal that is reconstructed and passes the quality cuts, and the number of
s7 signal that was generated.

dimuons reconstructed, M2,mulDcut,triggerselection ( )
€ detectable Pty (12)
dimuon generated, M1
detectable (pT’ y)

s where the denominator is the number of generated events declared detectable within the mass
99 range M1=[2.6-3.5] GeV/c 2, which is same as the numerator of the acceptance definition in
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given (pt,y). The numerator represents the number of reconstructed event within the mass
range M2 = [2.95 - 3.25] GeV/c 2, with the muon ID cut described in Section 3, and trigger
selection (HLT_PAL1DoubleMuOpen_v1).

This would be done as if the MC was data, that is applying closely the signal extraction method
developed for the data. The reconstructed numbers include all efficiency corrections: trigger,
identification (cuts) and tracking.

Figure ?? presents the efficiency plots in pt vs ycum for prompt and non-prompt J/ip which are
obtained from MC_truth with the peak counting method. In real analysis, we weighted this
efficiency MC{truth using the TNP scale factor which will be described in the next chapter in
detail. Also, we studied bin migration effects in efficiency estimation and decide not to per-
form unfolding since pt of the generated and reconstructed particles show a strong correlation
between 0.92-0.98 More detailed explanation can be found on Appendix B.
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Figure 21: Generated prompt(left) and non-prompt(right) J /¢ after single muons kinematic cut
is applied, as a function of pr and vt of J/.

30

w
o

25)- 1+

T

p. (GeV/c)
.

p. (GeV/c)

20w o

15

T NI I I S WA N E
-1. -1 -05 0 05 1

Y,

lab

lab

Figure 22: Reconstructed prompt(left) and non-prompt(right) J/i with muon quality cuts and
trigger matching as a function of pr and y;5t of J/i, which corresponds to the numerator of the

efficiency.

6.1.2 Reweighting of primary vertex position distribution

Figure 25 shows the longitudinal position of the reconstructed primary vertex in Monte carlo
simulation and real data for the 1st run. The Monte-Carlo has a broader distribution and this
could cause a bias in the acceptance and efficiency corrections.

In order to correct the difference, a weighting is applied to the Monte-Carlo events. Both dis-
tributions are fitted with one Gaussian function independently and shown on the left plot of
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Figure 23: Efficiency of prompt(left) and non-prompt(right) J/¢ in fined-grained pr and yjy,.
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Figure 24: Efficiency of prompt(left) and non-prompt(right) J/¢ in pt and y,, binning used
in the analysis. Dashed line indicates the actual kinematic ranges actually considered in the
analysis.

figure 25. The ratio of the two fitted function and the ratio of distributions themselves are
shown on the right side of figure 25. The ratio of the fits is used to reweight the Monte-Carlo.

We also applied the cut on the primary vertex z : [zVtx| < 10 cm to exclude poor quality
events, and select where 1st run and 2nd run distributions matches well. By this cut, about 6%
of events are rejected both in Monte-Carlo and Data.

The relative effect of the vertex weighting and cut is smaller than 3% as it can be seen in fig-
ure 26 and figure 27 for the prompt J/i. For the non-prompt J/¢ whose vertex could be further
from the primary vertex, the efficiency values become higher over the whole range about 10%
at maximum as it can be seen in figure 28 and figure 29.
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Figure 25: Left : Comparison of the primary vertex longitudinal position of J/i candidates in
real data and in Monte Carlo simulations. Each distributions are fitted with a gaussian function
with the shown parameters. Right : violet line shows the ratio of the fitted functions that is used
to reweight the MC. black points are the ratio of real data and MC distributions.
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Figure 26: The efficiency values with(orange) and without(green) the z vertex weighting as
a function of pt for different rapidity ranges in prompt MC. Red dashed lines indicate the
minimum pt bin boundaries actually used in the analysis.
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ing as a function of pr for different rapidity ranges in prompt MC. Red dashed lines indicate
the minimum pr bin boundaries actually used in the analysis.
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Figure 29: The ratio of efficiency values with(orange) and without(green) the z vertex weight-
ing as a function of pr for different rapidity ranges in non-prompt MC. Red dashed lines indi-
cate the minimum p bin boundaries actually used in the analysis.
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27 6.1.3 Unfolding



6.2 Secondary correction for efficiency - Tag And Probe 41

s 6.2 Secondary correction for efficiency - Tag And Probe

20 The primitive efficiency correction factors in the previous section was computed based on the
s0 assumption that the MC sample reproduced perfectly the exact detector condition, which is
st not possible. In order to account the discrepancy of MC and reality, an additional correction
s32 step - called Tag and Probe method - was carried out. A detailed description of T&P method
433 is explained in [10]. Briefly, this procedure provides the data-driven single muon efficiency in
s34 terms of triggering, Muon ID and tracking cut. The efficiency ratio of real data to MC is com-
s35  puted is called the efficiency T&P scale factor for single muon. The scale factors are calcuclated
436 in several pr and bins and interpolated to cover the entire muon acceptance range. Those scale
w7 factors (SF(ph,n")) are used to correct the counted number of reconstructed Dimuon pairs
a8 (Sec. 6.1) in the event-by-event manner. In terms of technics, the Eq. 13 is modified into

_ Ngéz?&rﬁgzconstructed(pT,y) ® (SF(p’;ﬂi,T]V_) % SF(PI;Jr/W;H-))

€T&Pcorrected = dimuon generated, M1 ( )
detectable pr. Yy

(13)

, or
TNP efficiency of ]4+ TNP efficiency of y~

MC efficiency of u*+ MC efficiency of p—

ET&Pcorrected = €T&Pcorrected (14)

The tag muons are selected by a strict criteria including track quality cut and HLT_PAMu3
trigger matching in order to suppress the background level. In case of probes, two sets are used
for obtain two efficiencies. The stand alone muons are used to measure the tracking efficiency
and the track muons to measure the Muon ID xtriggeringef ficiency.

440 e Muon ID & trigger efficiency:

aa1 e tag: tracker muon with quality cut & matching to single muon trigger
442 (HLT,PAMU?))

443 e probe: calorimeter muons with inner track quality cuts, without trigger
444 matching.

445 e passing criteria : probes that is one leg of HLT_PAL1DoubleMuOPen trig-
446 ger path and passes track quality cuts.

447 e Tracking efficiency:

448 e tag: tracker muon with quality cut & matching to single muon trigger
449 (HLT_PAMu3)

450 e probe: stand-alone muons with at least 12 valid hits

451 e passing criteria : probes matched to a tracker muon when it is extrapo-
452 lated to the inner tracker.

43 In all cases, identical selection criteria are applied to both data and simulation.

ss4  In the following are presented the muon ID X triggeref fiicncy(Fig. ??)andtrackingef ficiency(Fig.31)asafunct
s | —n| < 12,12 < |g] < 1.6, 1.6 < |5| < 2.4 - are chosen where the efficiency is radically

ss6 changed due to the detector geometry. And the pr bins are determined in order to distribute

ss7 - enough statistics for invariant mass fitting in every bin.
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6.2.1 Trigger and Muon ID efficiency

The trigger efficiency, more spectifically the probability of being one of legs that contributed
in HLT_PAL1DoubleMuOpen firing, and the muon ID efficiency was combined in a procedure
because they shares the same basic probe criteria. The signal shape is described by a Crystal
Ball plus a Gaussian. The addition of the Gaussian is motivated to describe varying detector
resolution. The parameters in the Crystal Ball as well as the width of the Gaussian are free
parameters of the fit. The background is described by fourth order polynomial functions. The
summary of efficiencies and the scale factors are in Fig 30.
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Figure 30: Efficiency of trigger object matching (HLT_PAL1DoubleMuOpen) and Muon ID cuts
in PYTHIA and real data (Top), and data-to-MC ratio(Bottom).

6.2.2 Tracking efficiency

The fits for the tracking efficiency are challenging due to the poor resolution of the standalone
muons used as probes. For the same reason, an enlarged fitting range is used. A double Gaus-
sian is chosen to describe the signal shape with all its parameters left to float. The background
is described by a exponential function. As shown in Fig 31, the tracking efficiency of muons is
higher than 95% for the entire acceptance range, and the data-to-MC ratio is consistent to the
unity in 2% level which is very small. Therefore, we decided to use the MC tracking efficiency
in raw rather than applying this small correction factor. Instead, the upper limit, 2%, was used
to estimate the systematic uncertainty by computing the error propagation to Dimuon pair
efficiency.
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6.2.3 Dimuon efficiency factors corrected by Tag and Probe

The J/i reconstruction efficiency derived from MC sample was modified by covoluting the
scale factors in event-by-event manner as described in the previous section. The Fig. 38 — Fig. ??
shows how much the efficiency was modifed by this procedure. The T&P corrected efficiency
correction factor is used for the rest of this note.
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Figure 37: Ratio of efficiencies before and after T&P corrections in non-prompt J/i in Pb-p

direction collision
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6.3 Systematic uncertainties

The bin-to-bin systematic uncertainties are taken from the differences between the efficiency
values after applying weight from T&P and those from MC samples before weighting. Overall
systematic uncertainties from efficiency are 0.2 - 8.5% for prompt J/¢ and 0.5-8.7% for non-
prompt J/i for pr > 6.5 GeV/c. The systematic uncertainties are up to 25% for 0 < pr <
3GeV/e.
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6.3 Systematic uncertainties

Table 22: Prompt Rpp efficiency systametic uncertainty.

Range Efficiency Error
YcMm \ pT \ Er Before \ After | Abs. \ Rel. (%)
1.5-1.93 3-6.5 0.0-120.0 | 0.259 | 0.301 | 0.042 13.97
6.5-10.0 0.391 | 0.421 | 0.030 7.12
10.0-30.0 0.458 | 0.473 | 0.015 3.26
1.2-15 6.5-10.0 0.451 | 0.482 | 0.031 6.52
10.0-30.0 0.459 | 0.511 | 0.016 3.13
09-1.2 6.5-10.0 0.453 | 0.486 | 0.033 6.71
10.0-30.0 0.586 | 0.604 | 0.019 3.08
0.5-09 6.5-10.0 0.377 | 0.399 | 0.022 5.52
10.0-30.0 0.626 | 0.640 | 0.014 2.12
0.0-05 6.5-10.0 0.386 | 0.408 | 0.022 5.39
10.0-30.0 0.668 | 0.668 | 0.009 1.33
-0.5-0.0 6.5-10.0 0.375 | 0.396 | 0.021 5.30
10.0-3.0 0.660 | 0.665 | 0.005 0.75
-09--05 | 6.5-10.0 0.379 | 0.401 | 0.022 5.49
10.0-30.0 0.663 | 0.670 | 0.007 1.04
-1.2--09 | 6.5-10.0 0.376 | 0.398 | 0.022 5.53
10.0-30.0 0.668 | 0.677 | 0.008 1.24
-1.5--1.2 | 6.5-10.0 0.342 | 0.366 | 0.024 6.55
10.0-30.0 0.613 | 0.624 | 0.012 1.86
-1.93--1.5 | 3-6.5 0.079 | 0.091 | 0.012 13.19
6.5-10.0 0.396 | 0.425 | 0.029 6.83
10.0-30.0 0.582 | 0.598 | 0.016 2.61
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Table 23: Non-Prompt Rrp efficiency systematic uncertainty.

Range Efficiency Error
YcMm \ pT \ Er Before \ After | Abs. \ Rel. (%)
1.5-1.93 3-6.5 0.0-120.0 | 0.273 | 0.315 | 0.041 13.17
6.5-10.0 0.401 | 0.429 | 0.028 6.46
10.0-30.0 0.456 | 0.467 | 0.011 2.46
1.2-15 6.5-10.0 0.448 | 0.477 | 0.029 6.10
10.0-30.0 0.524 | 0.537 | 0.013 2.49
09-1.2 6.5-10.0 0.460 | 0.490 | 0.030 6.13
10.0-30.0 0.585 | 0.598 | 0.013 2.20
0.5-09 6.5-10.0 0.387 | 0.409 | 0.021 5.23
10.0-30.0 0.610 | 0.619 | 0.009 1.46
0.0-05 6.5-10.0 0.402 | 0.421 | 0.019 4.59
10.0-30.0 0.658 | 0.663 | 0.004 0.64
-0.5-0.0 6.5-10.0 0.390 | 0.410 | 0.020 4.96
10.0-3.0 0.648 | 0.650 | 0.002 0.35
-09--05 | 6.5-10.0 0.396 | 0.415 | 0.019 4.65
10.0-30.0 0.653 | 0.655 | 0.002 0.43
-1.2--09 | 6.5-10.0 0.396 | 0.416 | 0.020 4.89
10.0-30.0 0.664 | 0.668 | 0.003 0.48
-1.5--1.2 | 6.5-10.0 0.353 | 0.374 | 0.021 5.49
10.0-30.0 0.619 | 0.625 | 0.006 1.02
-1.93--1.5 | 3-6.5 0.089 | 0.103 | 0.014 13.23
6.5-10.0 0.399 | 0.424 | 0.025 5.97
10.0-30.0 0.598 | 0.586 | 0.012 1.93
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Table 24: Prompt Rrp efficiency Et dependent systematic uncertainty.

Range Efficiency Error
YcMm \ pT \ Er Before \ After | Abs. \ Rel. (%)
1.5-1.93 3-6.5 0.0-20.0 0.258 | 0.299 | 0.042 13.89

20.0-30.0 | 0.253 | 0.293 | 0.041 13.91
30.0 < 0.253 | 0.294 | 0.041 13.82
6.5-10.0 | 0.0-20.0 0.389 | 0.419 | 0.030 7.15
20.0-30.0 | 0.389 | 0.418 | 0.029 7.03
30.0 < 0.388 | 0.417 | 0.029 6.95
10.0-30.0 | 0.0-20.0 0.451 | 0.466 | 0.016 3.34
20.0-30.0 | 0.455 | 0.470 | 0.015 3.19
30.0 < 0.452 | 0.468 | 0.016 3.33

09-15 6.5-10.0 | 0.0-20.0 0.451 | 0.483 | 0.032 6.67
20.0-30.0 | 0.449 | 0.481 | 0.032 6.69
30.0 < 0.451 | 0.483 | 0.032 6.63
10.0-30.0 | 0.0-20.0 0.526 | 0.542 | 0.016 2.99
20.0-30.0 | 0.534 | 0.550 | 0.016 291
30.0 < 0.528 | 0.543 | 0.016 2.87

0.0-0.9 6.5-10.0 | 0.0-20.0 0.380 | 0.402 | 0.023 5.62
20.0-30.0 | 0.378 | 0.400 | 0.022 5.49
30.0 < 0.379 | 0.402 | 0.022 5.58
10.0-30.0 | 0.0-20.0 0.650 | 0.662 | 0.012 1.75
20.0-30.0 | 0.649 | 0.660 | 0.011 1.73
30.0 < 0.636 | 0.647 | 0.010 1.61

-09-0.0 6.5-10.0 | 0.0-20.0 0.375 | 0.396 | 0.021 5.30
20.0-30.0 | 0.375 | 0.396 | 0.021 5.30
30.0 < 0.375 | 0.396 | 0.021 5.30
10.0-30.0 | 0.0-20.0 0.653 | 0.658 | 0.006 0.85
20.0-30.0 | 0.662 | 0.669 | 0.007 0.99
30.0 < 0.659 | 0.665 | 0.006 0.90

-1.5--09 | 6.5-10.0 | 0.0-20.0 0.350 | 0.371 | 0.022 5.82
20.0-30.0 | 0.350 | 0.371 | 0.022 5.82
30.0 < 0.356 | 0.379 | 0.022 591
10.0-30.0 | 0.0-20.0 0.632 | 0.641 | 0.009 1.47
20.0-30.0 | 0.636 | 0.646 | 0.010 1.55
30.0 < 0.626 | 0.635 | 0.009 1.42

-1.93--1.5 | 3-6.5 0.0-20.0 0.075 | 0.087 | 0.011 12.93
20.0-30.0 | 0.077 | 0.088 | 0.011 12.53
30.0 < 0.075 | 0.085 | 0.011 12.65
6.5-10.0 | 0.0-20.0 0.396 | 0.425 | 0.029 6.83
20.0-30.0 | 0.394 | 0.423 | 0.029 6.86
30.0 < 0.396 | 0.425 | 0.029 6.83
10.0-30.0 | 0.0-20.0 0.562 | 0.575 | 0.014 2.36
20.0-30.0 | 0.561 | 0.575 | 0.014 2.37
30.0 < 0.574 | 0.590 | 0.016 271
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Table 25: Non-Prompt Rrp efficiency Et dependent systematic uncertainty.

Range Efficiency Error
YcMm \ pT \ Er Before \ After | Abs. \ Rel. (%)
1.5-1.93 3-6.5 0.0-20.0 0.272 | 0.314 | 0.042 13.39

20.0-30.0 | 0.269 | 0.312 | 0.042 13.61
30.0 < 0.270 | 0.312 | 0.042 13.47
6.5-10.0 | 0.0-20.0 0.398 | 0.427 | 0.029 6.79
20.0-30.0 | 0.398 | 0.427 | 0.029 6.80
30.0 < 0.397 | 0.426 | 0.029 6.81
10.0-30.0 | 0.0-20.0 0.449 | 0.462 | 0.013 2.81
20.0-30.0 | 0.453 | 0.466 | 0.013 2.79
30.0 < 0.451 | 0.464 | 0.014 293
09-15 6.5-10.0 | 0.0-20.0 0.451 | 0.483 | 0.031 6.46
20.0-30.0 | 0.450 | 0.481 | 0.031 6.44
30.0 < 0.451 | 0.482 | 0.031 6.43
10.0-30.0 | 0.0-20.0 0.546 | 0.560 | 0.014 2.54
20.0-30.0 | 0.549 | 0.563 | 0.015 2.59
30.0 < 0.545 | 0.559 | 0.014 2.51
0.0-09 6.5-10.0 | 0.0-20.0 0.391 | 0.413 | 0.022 5.33
20.0-30.0 | 0.390 | 0.412 | 0.022 5.44
30.0 < 0.390 | 0.412 | 0.022 5.33
10.0-30.0 | 0.0-20.0 0.633 | 0.642 | 0.009 1.40
20.0-30.0 | 0.633 | 0.642 | 0.009 1.40
30.0 < 0.627 | 0.636 | 0.009 1.42
-09-0.0 6.5-10.0 | 0.0-20.0 0.391 | 0.412 | 0.021 5.10
20.0-30.0 | 0.391 | 0.412 | 0.021 5.10
30.0 < 0.391 | 0.412 | 0.021 5.10
10.0-30.0 | 0.0-20.0 0.644 | 0.649 | 0.004 0.68
20.0-30.0 | 0.648 | 0.652 | 0.005 0.70
30.0 < 0.647 | 0.651 | 0.004 0.61
-1.5--09 | 6.5-10.0 | 0.0-20.0 0.367 | 0.389 | 0.022 5.66
20.0-30.0 | 0.367 | 0.389 | 0.022 5.66
30.0 < 0.368 | 0.391 | 0.022 5.73
10.0-30.0 | 0.0-20.0 0.636 | 0.643 | 0.007 1.15
20.0-30.0 | 0.638 | 0.645 | 0.007 1.15
30.0 < 0.633 | 0.641 | 0.007 1.16
-1.93--1.5 | 3-6.5 0.0-20.0 0.087 | 0.100 | 0.013 12.97
20.0-30.0 | 0.088 | 0.101 | 0.013 12.92
30.0 < 0.087 | 0.100 | 0.013 13.03
6.5-10.0 | 0.0-20.0 0.397 | 0.424 | 0.027 6.36
20.0-30.0 | 0.396 | 0.424 | 0.028 6.51
30.0 < 0.397 | 0.424 | 0.027 6.36
10.0-30.0 | 0.0-20.0 0.575 | 0.587 | 0.013 2.14
20.0-30.0 | 0.572 | 0.585 | 0.013 2.16
30.0 < 0.564 | 0.578 | 0.014 242
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Table 26: Prompt Rrp efficiency Ny dependent systematic uncertainty.

Range Efficiency Error
Ycm \ pT \ Ny || Before \ After | Abs. \ Rel. (%)
1.5-1.93 3-6.5 0-55 0.258 | 0.300 | 0.042 13.99

56-85 | 0.258 | 0.299 | 0.042 13.89
86 < | 0.256 | 0.297 | 0.041 13.94
6.5-10.0 | 0-55 0.389 | 0.418 | 0.029 7.03
56-85 | 0.380 | 0.409 | 0.029 7.00
86 < | 0.390 | 0.420 | 0.029 7.00
10.0-30.0 | 0-55 0.451 | 0.466 | 0.016 3.34
55-85 | 0.454 | 0.469 | 0.016 3.32
86 < | 0.450 | 0.465 | 0.015 3.23
09-15 6.5-10.0 | 0-55 0.443 | 0.474 | 0.031 6.54
56-85 | 0.446 | 0.477 | 0.031 6.50
86 < | 0.452 | 0.484 | 0.032 6.61
10.0-30.0 | 0-55 0.539 | 0.556 | 0.017 2.99
56-85 | 0.528 | 0.544 | 0.016 2.97
86 < | 0.534 | 0.550 | 0.016 291
0.0-0.9 6.5-10.0 | 0-55 0.378 | 0.400 | 0.022 5.50
56-85 | 0.381 | 0.404 | 0.023 5.69
86 < | 0.382 | 0.405 | 0.023 5.68
10.0-30.0 | 0-55 0.650 | 0.662 | 0.012 1.75
55-85 | 0.649 | 0.660 | 0.011 1.73
86 < | 0.636 | 0.647 | 0.010 1.61
-0.9-0.0 6.5-10.0 | 0-55 0.375 | 0.396 | 0.021 5.30
56-85 | 0.375 | 0.396 | 0.021 5.30
86 < | 0.375 | 0.396 | 0.021 5.30
10.0-30.0 | 0-55 0.656 | 0.662 | 0.006 0.94
56-85 | 0.653 | 0.658 | 0.006 0.85
86 < | 0.662 | 0.669 | 0.007 0.99
-1.5--09 | 6.5-10.0 | 0-55 0.347 | 0.369 | 0.021 5.80
56-85 | 0.346 | 0.368 | 0.022 5.88
86 < | 0.356 | 0.379 | 0.022 591
10.0-30.0 | 0-55 0.632 | 0.641 | 0.009 1.47
56-85 | 0.641 | 0.651 | 0.010 1.54
86 < | 0.626 | 0.635 | 0.009 1.42
-1.93--1.5 | 3-6.5 0-55 0.075 | 0.087 | 0.011 12.93
56-85 | 0.075 | 0.086 | 0.011 12.79
86 < | 0.075 | 0.085 | 0.011 12.65
6.5-10.0 | 0-55 0.391 | 0.419 | 0.028 6.77
56-85 | 0.391 | 0.420 | 0.029 6.90
86 < | 0.396 | 0.425 | 0.029 6.83
10.0-30.0 | 0-55 0.554 | 0.567 | 0.014 2.40
56-85 | 0.562 | 0.575 | 0.014 2.36
86 < | 0.577 | 0.593 | 0.016 2.70
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Table 27: Non-Prompt Rrp efficiency N, dependent systematic uncertainty.

Range Efficiency Error
Ycm \ pT \ Before \ After | Abs. \ Rel. (%)

1.5-1.93 3-6.5 0-55 0.272 | 0.314 | 0.042 13.39
56-85 | 0.272 | 0.314 | 0.042 13.39

86 < | 0270 | 0.313 | 0.042 13.56

6.5-10.0 | 0-55 0.398 | 0.427 | 0.029 6.80

56-85 | 0.391 | 0.420 | 0.029 6.90

86 < | 0.398 | 0.427 | 0.029 6.79

10.0-30.0 | 0-55 0.449 | 0.462 | 0.013 2.81

56-85 | 0.452 | 0.465 | 0.013 2.80

86 < | 0.449 | 0.462 | 0.013 2.81

09-15 6.5-10.0 | 0-55 0.446 | 0.476 | 0.030 6.39
56-85 | 0.448 | 0.478 | 0.030 6.27

86 < | 0.452 | 0.483 | 0.032 6.54

10.0-30.0 | 0-55 0.552 | 0.567 | 0.015 2.64

56-85 | 0.538 | 0.553 | 0.015 2.75

86 < | 0549 | 0.563 | 0.015 2.59

0.0-0.9 6.5-10.0 | 0-55 0.390 | 0.412 | 0.022 5.34
56-85 | 0.391 | 0.413 | 0.022 5.33

86 < | 0.391 | 0.413 | 0.022 5.32

10.0-30.0 | 0-55 0.633 | 0.642 | 0.009 1.40

56-85 | 0.633 | 0.642 | 0.009 1.40

86 < | 0.627 | 0.636 | 0.009 1.41

-09-0.0 6.5-10.0 | 0-55 0.391 | 0.412 | 0.021 5.10
56-85 | 0.391 | 0.412 | 0.021 5.10

86 < | 0.391 | 0.412 | 0.021 5.10

10.0-30.0 | 0-55 0.645 | 0.650 | 0.005 0.77

56-85 | 0.644 | 0.649 | 0.004 0.68

86 < | 0.648 | 0.652 | 0.005 0.70

-1.5--09 | 6.5-10.0 | 0-55 0.366 | 0.388 | 0.022 5.67
56-85 | 0.358 | 0.380 | 0.021 5.63

86 < | 0.368 | 0.391 | 0.022 5.73

10.0-30.0 | 0-55 0.635 | 0.643 | 0.008 1.24

56-85 | 0.639 | 0.647 | 0.008 1.24

86 < | 0.634 | 0.641 | 0.007 1.09

-193--15 | 3-6.5 0-55 0.087 | 0.100 | 0.013 12.97
56-85 | 0.087 | 0.100 | 0.013 13.00

86 < | 0.087 | 0.100 | 0.013 13.03

6.5-10.0 | 0-55 0.393 | 0.420 | 0.027 6.43

56-85 | 0.395 | 0.422 | 0.027 6.40

86 < | 0.397 | 0.424 | 0.027 6.36

10.0-30.0 | 0-55 0.653 | 0.566 | 0.013 2.33

56-85 | 0.575 | 0.587 | 0.013 2.14

86 < | 0572 | 0.586 | 0.014 2.32
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Table 28: Prompt Cross Section efficiency systametic uncertainty.

Range Efficiency Error
YcMm \ PT \ Er Before \ After | Abs. \ Rel. (%)
1.5-1.93 | 0.0-3.0 0.0-120.0 | 0.070 | 0.093 | 0.024 25.32
3.0-6.5 0.259 | 0.300 | 0.042 13.86
6.5-7.5 0.362 | 0.392 | 0.031 7.80
7.5-8.5 0.387 | 0.417 | 0.030 7.10
8.5-9.5 0.441 | 0.468 | 0.027 5.77
9.5-11.0 0.438 | 0.460 | 0.022 4.78
11.0-14.0 0.463 | 0.481 | 0.018 3.66
14.0-30.0 0.443 | 0.447 | 0.004 0.89
1.0-1.5 6.5-7.5 0.424 | 0.459 | 0.035 7.63
7.5-8.5 0.470 | 0.501 | 0.031 6.27
8.5-9.5 0.493 | 0.520 | 0.027 5.27
9.5-11.0 0.505 | 0.530 | 0.025 4.79
11.0-14.0 0.535 | 0.553 | 0.018 3.25
14.0-30.0 0.552 | 0.555 | 0.004 0.65
0.0-1.0 6.5-7.5 0.286 | 0.309 | 0.024 7.63
7.5-8.5 0.412 | 0.436 | 0.024 5.51
8.5-9.5 0.500 | 0.522 | 0.022 421
9.5-11.0 0.571 | 0.590 | 0.019 3.22
11.0-14.0 0.628 | 0.642 | 0.014 2.18
14.0-30.0 0.710 | 0.711 | 0.001 0.14
-1.0-0.0 | 6.5-7.5 0.206 | 0.229 | 0.023 10.04
7.5-8.5 0.373 | 0.397 | 0.024 6.05
8.5-9.5 0.492 | 0.512 | 0.020 3.91
9.5-11.0 0.575 | 0.587 | 0.012 2.05
11.0-14.0 0.657 | 0.663 | 0.006 0.97
14.0-30.0 0.731 | 0.732 | 0.001 0.14
-15--1.0 | 6.5-7.5 0.212 | 0.233 | 0.021 9.01
7.5-8.5 0.365 | 0.390 | 0.025 6.46
8.5-9.5 0.488 | 0.510 | 0.023 4.43
9.5-11.0 0.543 | 0.561 | 0.019 3.31
11.0-14.0 0.638 | 0.652 | 0.014 2.21
14.0-30.0 0.720 | 0.729 | 0.009 1.23
24-15 | 3.0-6.5 0.106 | 0.123 | 0.016 13.36
6.5-7.5 0.336 | 0.367 | 0.032 8.60
7.5-8.5 0.424 | 0.454 | 0.030 6.52
8.5-9.5 0.487 | 0.514 | 0.027 5.18
9.5-11.0 0.502 | 0.526 | 0.024 4.56
11.0-14.0 0.569 | 0.590 | 0.021 3.56
14.0-30.0 0.625 | 0.642 | 0.017 2.65




64

6 Efficiency

Table 29: Non-Prompt Cross Section efficiency systametic uncertainty.

Range Efficiency Error
YcMm \ PT \ Er Before \ After | Abs. \ Rel. (%)
1.5-1.93 | 0.0-3.0 0.0-120.0 | 0.068 | 0.092 | 0.023 25.55
3.0-6.5 0.272 | 0.314 | 0.042 13.38
6.5-7.5 0.372 | 0.403 | 0.032 7.83
7.5-8.5 0.399 | 0.428 | 0.029 6.78
8.5-9.5 0.422 | 0.448 | 0.026 5.80
9.5-11.0 0.448 | 0.471 | 0.023 4.89
11.0-14.0 0.446 | 0.462 | 0.016 3.38
14.0-30.0 0.454 | 0.457 | 0.003 0.66
1.0-1.5 6.5-7.5 0.422 | 0.457 | 0.035 7.67
7.5-8.5 0.463 | 0.494 | 0.031 6.72
8.5-9.5 0.488 | 0.516 | 0.028 5.43
9.5-11.0 0.514 | 0.539 | 0.025 4.64
11.0-14.0 0.545 | 0.565 | 0.020 3.57
14.0-30.0 0.558 | 0.558 | 0.000 0.00
0.0-1.0 6.5-7.5 0.290 | 0.314 | 0.024 7.65
7.5-8.5 0.406 | 0.429 | 0.024 5.50
8.5-9.5 0.487 | 0.508 | 0.021 4.14
9.5-11.0 0.550 | 0.568 | 0.018 3.17
11.0-14.0 0.619 | 0.632 | 0.013 2.06
14.0-30.0 0.682 | 0.681 | 0.000 0.06
-1.0-0.0 | 6.5-7.5 0.209 | 0.233 | 0.024 10.30
7.5-8.5 0.374 | 0.399 | 0.025 6.27
8.5-9.5 0.490 | 0.509 | 0.019 3.74
9.5-11.0 0.571 | 0.584 | 0.013 2.16
11.0-14.0 0.638 | 0.643 | 0.006 0.87
14.0-30.0 0.700 | 0.700 | 0.000 0.00
-15--1.0 | 6.5-7.5 0.220 | 0.242 | 0.022 9.11
7.5-8.5 0.366 | 0.390 | 0.024 6.15
8.5-9.5 0.473 | 0.494 | 0.021 4.25
9.5-11.0 0.548 | 0.565 | 0.017 3.01
11.0-14.0 0.618 | 0.631 | 0.013 2.06
14.0-30.0 0.695 | 0.701 | 0.006 0.86
24-15 | 3.0-6.5 0.121 | 0.139 | 0.018 13.20
6.5-7.5 0.333 | 0.363 | 0.030 8.26
7.5-8.5 0.419 | 0.449 | 0.030 6.68
8.5-9.5 0.467 | 0.494 | 0.027 5.39
9.5-11.0 0.519 | 0.544 | 0.024 4.49
11.0-14.0 0.562 | 0.583 | 0.021 3.60
14.0-30.0 0.617 | 0.634 | 0.017 2.62
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7 Correction factor and total systematic uncertainties

7.1 Full correction factor (Acceptance*Efficiency)

The full correction factor for the raw yields, which is the product of efficiency and acceptance,
is shown on figure 40(1st run) and figure 41 (2nd run) for prompt J/i. Plots for non-prompt J/¢
is shown in figure 42 (1st run) and figure 43 (2nd run).
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Figure 40: correction factor(=a * €) for prompt J/i as a function of pr (Left) and y;,,(Right) in

case of 1st run period.
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Figure 41: correction factor(=a * €) for prompt J/¢ as a function of pr (Left) and y;,,(Right) in

case of 2nd run period.

The event-activity dependency of correction factor is not considered, but from Tag and Probe
study using pp and pPb data, it would be expected smaller than 0.5%.
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Figure 42: correction factor(=« * €) for non-prompt J/¢ as a function of pr (Left) and y;,,(Right)
in case of 1st run period.
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Figure 43: correction factor(=«a * €) for non-prompt J/ as a function of pr (Left) and y;,,(Right)
in case of 2nd run period.
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7.2 Summary for total systematic uncertainties

The total systematic uncertainty is estimated by summing in quadrature the contributions from
the investigated sources that are acceptance, efficiency and signal extraction. Also in case of
cross section measurements, the uncertainties from luminosity and branching ratio that are
global to all points are also considered.

Total = \/ (Yield extraction)? + (Acceptance)? + (Efficiency)?, (15)

The ranges of the variations are summarized in Table 30. The largest uncertainty comes from
the lowest pt bin 0-3 GeV/c mainly from T&P weighted efficiency. For the bin 3 < pr <
6.5 GeV/c, systematic uncertainties from efficiency are 13.9% and 13.3% for prompt and non-
prompt J/ip repectively. For the region with pt larger than 6.5 GeV/c, systematic uncertainties
from efficiencies are up to 7.2% for prompt J/¢, and 7.8% for non-prompt J /.

Table 30: Summary of the relative systematic uncertainties on prompt and non-prompt J/¢.
“Luminosity” and ”“branching” ratio are global uncertainties that is common to all data points,
and only for cross section measurement.

prompt J/¢ | non-prompt J/ip
luminosity 3.5 3.5
branching ratio 1 1
Yield extraction 0.6-3.5 1.3-5.9
Acceptance 0.0-2.2 0.2-1.7
efficiency 0.1-25.3 0.1-25.5
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8 Results

8.1 Jip production Cross section

The production cross section of prompt and non-prompt J/i are computed by

/
2o NJY/(A-e)
dprdy  Lint X B(J/ — ptu=) x AprAy’
where variables are defined as follows:

N%lf is the raw yield of J/i extracted from the fit procedure in a given (pr, y) bin,

(16)

A is the acceptance,

¢ is the dimuon efficiencies,

Liyt = (34.7 & 1.2) nb~! is the integrated luminosity,

B(J/p — utu~) = (5.93 £0.06)% is the branching ratio to the u*p~ channel [11],
Apt and Ay are the widths of the (pr, y) bin.

In Figs 44 and 45, the double differential cross-sections are plotted as a function of pr in six
different rapidity ranges for prompt and non-prompt J/i, respectively. The bin abscissae are
given by the bin-averaged values, and the uncertainties from luminosity and branching ratio,
that are global to all points are £ 3.6% and not drawn on the plots.

In particular at low pr, the cross section of forward and backward repidities are not identical.
This can be further quantified by studying Rrg, the forward to backward ratio of the yields.

In Fig 46, differential cross sections are plotted as a function of the center-of-mass rapidity after
integrated pr for prompt and non-prompt J/4, respectively.
8.2 Forward-backward production ratio Rrp

The nuclear parton distribution functions are suppressed, compared to the proton PDFs, in-
creasingly for lower values of x "%”eiy. The rapidity dependence of the J/i yields provides

thus important information on the nPDF effects. We study this effect through the forward-
backward ratio defined by:

Nt

forward  Apackward * €backward
Rep = —5 " , (17)
Nbackwar J forward * € forward

where variables are defined as
. N%trw ard /backward 1S the raw yield extracted from the fit procedure in the forward or
backward rapidity bins,
® Apackward /backward 1S the acceptance values for the forward or backward rapidity,
® Epackward/backward 1S the efficiency for the forward or backward rapidity bins.
Fig 47 displays the ratio Rpp as a function of pr in three different rapidity ranges for prompt

and non-prompt J/¢. The bin abscissae are determined by the bin-averaged values. The points
are plotted at x values corresponding to the average of the event distribution within the bins.
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Figure 44: Double differential cross sections for prompt J/i. The data points are scaled by 10
for 1 < |ycm| < 1.5 and by 100 for 1.5 < ycm < 1.93 and —2.4 < ycpm < —1.5. The global
uncertainties are £ 3.6%.

Especially, for the most forward or backward regions, the CMS detector covers pr of ] /i down
to 3 GeV/c. It is manifest that the Rrp values increase with pr, starting from a relatively
suppressed value Rrp 0.7 at the most forward and backward rapidity bin corresponding to the
smaller Bjorken x values.

Fig 48 displays the ratios Rrp as a function of rapidity for two pt bins for prompt and non-
prompt J/i. No strong rapidity dependence can be observed within uncertainties, which is
different from other experiments at LHC. This can be understood by the fact that the CMS cov-
ers the mid-rapidity regions and ALICE [12] and LHCb[13] experiments cover more forward
rapidities. and the difference of rapidity values between forward and backward are relatively
small.
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uncertainties are & 3.6%.
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Figure 47: pr dependences of Rrp for prompt (left) and non-prompt J/¢ (right) in several

rapidity ranges.

Table 31: Rrp of prompt J/i as function of rapidity, and p. Quoted uncertainties are statistical

and systematic.

yeMU/p)|  pr(/p) [GeV/el EfFT"* [Geviel  (pr(/y)) [GeV/e] Rrs
3.0< pr < 6.5 448 0.694+0.0340.10
6.5 < pr <10.0 7.90 0.86+0.03+0.06
L5yl <193 450< ;IZT <30.0 =10 13.22 0.98-£0.0640.03
6.5 < pr <10.0 7.94 0.8340.024+0.06
09 < |y| <15 10.0<pr <300 0-120 13.36 0.96+0.0440.03
6.5< pr < 10.0 8.23 0.90+0.034+0.05
00< \y[ <09 100<pr <300 0-120 13.64 0.95+0.03+0.02

Table 32: Rpp of non-prompt J/¢ as function of rapidity, and pr. Quoted uncertainties are
statistical and systematic.

yeM/p)l  pr(/g) [Gev/e]l EZT[Gevie] (pr(/y)) [GeV/e] Rep
30< pr <65 4.48 0.7240.0640.10
6.5 < pr <10.0 7.90 0.894+0.054+0.07
L5yl <198 4502 ZT <30.0 0-120 13.22 1.0940.08+0.03
6.5 < pr <10.0 7.94 0.82+0.04+0.05
09 < \y[ <15 10.0< pr<30.0 0-120 13.36 0.95+0.04+0.03
6.5 < pr <10.0 8.23 0.9540.0440.05
0.0 < \y[ <09 10.0<pr <300 0-120 13.64 0.9940.0440.03
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Figure 48: Rapidity distributions of Rrp for prompt (left) and non-prompt J/ip (right) in several
rapidity ranges.



545

546

547

548

549

550
551

552

553
554

555
556
557

558

8.3 Event activity dependence 73

8.3 Event activity dependence

The Rrp are further analyzed as a function of the multiplicity-related variables, such as the

transverse energy deposited in the forward hadronic calorimeters in 4 < || < 5.2, E? Fln>4 o

: Lo 24
the number of charged tracks reconstructed in central region in N, t'fa‘fk .

The bin sizes in Table 33 were chosen according to the statistics in the muon triggered data.

The mean value for each bin is computed from minimum bias sample. The table also includes
the fraction of the minimum bias events in each bin.

Events/(GeV)
=
o

=
S
ES

=
o
&

[N
S
>

— minimum bias sample

—dimuon sample

=
S

° AL AL AL B

e e e e 1y
20 40 60 80 100 120

B (Gev)

Figure 49: distributions of E?FW|>4 (left) and N, 7l <24 (right) from the minimum bias sample

tracks
and muon sample used in the analysis.

Table 33: Multiplicity-related bins in E?FWM and N mfkizl comprising the bin edges, the mean

within the bin, and the fraction of recorded events falling in the bin.

[E?FW>4 (GeV)] <E¥FW>4) Event fraction | [N m:k? 1 (N 17!;§4> Event fraction
0-20.0 9.4 73% 0-55% 25 72%
20.0-30.0 24.3 18% 56-85% 69 18%
30.0< 37.2 9% 86< 108 10%
Fig 50 shows the ratio Rrp as a function of E? Fin>% gor prompt and non-prompt J/¢. Fig ??

shows the same Rpp data as a function of Nt‘ﬂfkizl employing the same pt and y binning as

tig 50. The bin abscissae are given by the bin-averaged values. It can be observed that Rrp

decreases with both event-activity variables, E¥F|m>4 and N, t'fa‘fk? in all rapidity bins. The Rrp

data do not show any rapidity dependence for 6.5 < pt < 30.0 GeV/c, but the decreasing rate
is larger for the lower pr data. This observation on the pr dependence of Rrg may provide an
important constraint on the cold nuclear matter effect.
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Figure 50: Rfp as a function of E

lower pr data 3 < p16.5 GeV /c are given in addition.

statistical and systematic.

Table 34: Rrp of prompt J/i as function of rapidity, pr, and EEF || >4

* for prompt (left) and non-prompt J/3 (right). The data
are integrated over 6.5 < pt < 30 GeV /c. For the most forward data in 1.5 < ycu| < 1.93, the

. Quoted uncertainties are

M)l pr(/9) [Gev/el Eff1* [Gevye] Res
30< pr <65 0.80-£0.04%0.11
< .

LSyl <193 (5 <300 0-20 0.98-:0.04-0.07

3.0< pr <65 0.62-£0.0420.09
L5yl <198 5y <300 20-30 0.810.040.07

30< pr <65 0.51=£0.030.07
LSyl <193 (5 <300 30-120 0.83-£0.04£0.06
09<[y[<15 65< pr <300 0-20 0.91-£0.03+0.06
09<|y|<15 65< pr <300 20-30 0.812£0.03+0.05
09<|y[<15 65< pr <300 30-120 0.83-£0.0420.05
00<|y[<09 65< pr <300 0-20 0.94£0.03+0.05
00<|y[<09 65< pr <300 20-30 0.92:£0.03+0.05
00<|y[<09 65< pr <300 30-120 0.85-£0.0420.05
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HEF||>4

Table 35: Rrp of non-prompt J/i as function of rapidity, pt, and E;; . Quoted uncertainties
are statistical and systematic.
yeM(/p)|  pr(/y) [Gev/e]l EFFIT* [Gevye] Res
30< pr <65 0.8340.09+0.12
< _
L5yl <198 5 <300 0-20 1.01-£0.09-+0.07
3.0< pr <6.5 0.68+0.09+0.10
L5 <yl <1.98 6.5 < pr <30.0 20-30 0.97+0.09+0.07
30< pr <65 0.6340.10£0.09
< _
15 <yl <193 6.5 < pt <30.0 30-120 0.7540.08=+0.05
09<]|yl <15 65<pr<30.0 0-20 0.87+0.04+0.06
09<]yl <15 65<pr <300 20-30 0.92+0.06£0.06
09<|yl <15 65<pr<30.0 30-120 0.76+0.0540.05
00<|y| <09 65<pr<300 0-20 1.0440.05+0.06
00<]y <09 65<pr<300 20-30 0.93+0.0540.05
00<]y <09 65<pr<30.0 30-120 0.83+0.0540.05
Table 36: Rrp of prompt J/i as function of rapidity, pt, and N t‘ja'fk? Quoted uncertainties are

statistical and systematic.

24
yeM(/p)|  pr(/p) [Gev/e]l NJIS2 Res

30< pr <65 0.8120.04=0.11
LSl <19 o e300 O 1044003008
30< pr <65 0.66=0.03=0.09

< —
LSl <193 o <300 2% 08340034007
3.0< pr <65 0.5320.0320.07

< -
L5l <195 oo <300 800 (784003005
09<|y[<15 65<pr <300 055  0.98£0.04=0.06
09<|y[<15 65<pr <300 5685  0.82£0.04%0.05
09<|y[<15 65<pr <300 86350  0.79-£0.03%£0.05
00<|y|<09 65<pr <300 055  0.95+0.03+0.06
00<|y[<09 65<pr <300 5685  0.93£0.03£0.05
00<|y| <09 65<pr <300 86350  0.84=0.03£0.05
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are statistical and systematic.

Table 37: Rrp of non-prompt J/¢ as function of rapidity, pr, and N t'ﬂfk?
[n]<2.4
|yCM(]/l/J)| pT(]/lIJ) [GeV/C] Ntyacks RFB

3.0< pr <65 0.974+0.12+0.13

< v
15 < |y] <193 6.5 < pr <30.0 095 1.00£0.07+0.06
3.0< pr <6.5 0.6640.08+0.09
15 <|y[ <1.93 6.5 < pr <30.0 56-85 0.93+0.0740.08
3.0< pr <65 0.5640.0740.07

< _
15 < [y] <193 6.5 < pt <30.0 863350 0.814+0.06+0.06
09<]yl <15 65<pr<300 0-55 0.96+0.0540.06
09<]yl <15 65<pr <300 56-85 0.8940.06+0.06
09<]yl <15 65<pr<300 86-350 0.7240.04=+0.05
00<]y <09 65<pr<30.0 0-55 1.03+0.05+0.06
00<]y <09 65<pr<30.0 56-85 0.974+0.05+0.06
00<]y <09 65<pr<300 86-350 0.844-0.05+0.05

. Quoted uncertainties
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9 Cross check

9.1 MC closure test

In order to validate our acceptance and efficiency values, we have compared reconstructed can-
didates corrected by acceptance and efficiency to generated particles in MC. However, this can
not be matched 100% since we are using two MC samples for acceptance and efficiency respec-
tively. For efficiency measurement, we are using a official MC sample which will be described
in detail in section 6. For acceptance, we use the sample produced with the same configura-
tion setting as the official sample, but in which the kinematic filters for generated muons are
removed in section 5. This kinematic filter is applied to the official sample for enough statistics
to estimate efficiency, but it will bias the distributions of generated particles and therefore, bias
acceptance values. In other words, we compare the reconstructed particle from one sample, to
the generated particles from the other sample, and even though their configuration setting is
exactly the same, there is a fluctuation when we generate particles randomly in each samples.

Figure ?? and ?? show the closure test result of the prompt J/4 for pr < 30 GeV/cand 3 < pr <
30 GeV/c. They agree well except for the lower pr < 3 GeV/c regions. Figure ?? and ?? show
the result of the non-prompt J/i and similar disagreement in lower pt has been observed.
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Figure 52: The pr distribution of the ratio of RECO/(Acc x Eff) over GEN in prompt J/i
Monte-carlo for the 1st run in each rapidity bins.
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Figure 53: The pr distribution of corrected reconstructed J/¢y RECO/ (Acc * Ef f) and generated
J/¥ GEN in prompt ]/ Monte-carlo for the 2nd run in each rapidity bins.
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Figure 54: The pr distribution of the ratio of RECO/(Acc x Eff) over GEN in prompt J/i
Monte-carlo for the 2nf run in each rapidity bins.
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Figure 55: The pr distribution of corrected reconstructed J/¢y RECO/ (Acc * Ef f) and generated
J/¥ GEN in non-prompt J/{ Monte-carlo for the 1st run in each rapidity bins.
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Figure 56: The pr distribution of the ratio of RECO/(Acc * Ef f) over GEN in non-prompt J/i
Monte-carlo for the 1st run in each rapidity bins.



84

9 Cross check

o B T A A o o A B N o o e L PO o 2 e
ovls}:*: Non-prompt J/g 2nd run | 0.35F # Non-prompt J/p 2nd run L # Non-prompt J/¢ 2nd run ]
£ # —e— RECO/(Acc*Eff) 1 F —e— RECO/(Acc*Eff) ] 0.3 —e— RECO/(Acc*Eff) -
0’16? —e— GEN E 0.3 —e— GEN - [ —— GEN ]
0.14F - E ] 0.25]- 4
E 150<y,, <193 b 025 090 <y, <150 = r 0<y,,<0.90 1
0.12f 3 oot 1 r $ 1
E 4 q £ 1 0.2~ e
01 = 0.2 E E ]
0.08~ 3 0.15F E 0.15 4
E ] [ - ] [ -+ ]
0.06— — n ] . |
E he 1 01 E 0.1 :
0.04F . b E - ] E ]
E ] .05 4 0.05 — -
0.02f - E 0.05¢ - 1 F 1
C - ] E - | L ]
o ST BT e =il IR I I o) T I . il | | b ) SR B I - - =
0 10 15 20 25 30 0 5 10 15 20 25 30 0 20 25 30
P, (GeVic) P, (GeVic) P, (GeVic)
A B o o L B I o o o e R I e o L o o o R A
£ ] 0.35F 3 0.35¢ ]
0.355 Non-prompt J/ 2nd run C Non-prompt J/ 2nd run ~ J L * Non-prompt J/ 2nd run ]
E —e— RECO/(Acc*Eff) ] F —e— RECO/(Acc*Eff) E 0.3 —e— RECO/(Acc*Eff) -
0.3F —e— GEN - —— GEN ] r —— GEN ]
3 0.90<y_ <0 ] .25 150<y_ <-0.90 e 025 193<y <-150 E
0251 90 Yeu b E 4 S0 <Yg <0 E [ 93 <ygy <L ]
£ E 2 B 0.2f- ]
0.2~ ; i 0 £ 1 F + 1
o151 E 01sf- 3 01~ 7
g + ] E * 3 £ £ ]
01— 4 0.1~ 4 0.1 -
F ] F ] F - ]
0.05f —— B 0.05 —— B 0.05~ B
£ ] [ ] [ —— ]
o T B A - - = o T I I - - = ) S B I I L ]
0 15 20 25 30 0 15 20 25 30 0 15 20 25 30
P, (GeVic) P, (GeVic) P, (GeVic)

I e o e B L B T T T T

£ ] 0.2 4

0.35 * Non-prompt J/y 2nd run :+: Non-prompt J/¢ 2nd run 4

E —e— RECO/(Acc*Eff) ] 0. E —e— RECO/(Acc*Eff) E

0.3 —e— GEN 4 0.16/- + —e— GEN 3

025:7 + 240 <y, <-193 E 0145 287 <y, <-2.40 E

[ ] 0.12F -

oz E o 3

0.15 — 0.08F 9

£ - 1 £ ]

E ] 0.06]— 3

0.1— — C hal 1

L - ] 0.04 -

0.05F - [ * ]

E - ] r 3

s . ] 0.02F ., ]

ol b T L g L] T I T N PRI |

0 5 10 15 20 25 0 0 5 10 15 20 25 30

P, (GeVic) P, (GeVic)

Figure 57: The pr distribution of corrected reconstructed J/¢y RECO/ (Acc * Ef f) and generated
J/¥ GEN in non-prompt J/{ Monte-carlo for the 2nd run in each rapidity bins.
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Figure 58: The pr distribution of the ratio of RECO/(Acc * Ef f) over GEN in non-prompt J/i
Monte-carlo for the 2nf run in each rapidity bins.
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Figure 59: The efficiency values from the pure pythia samples used in the anlaysis (orange)
and HIJING embedded samples (green) as a function of pr for different rapidity ranges. Red
dashed lines indicate the minimum pr bin boundaries actually used in the analysis. Samples
are prompt J/¢ and boosted as the 1st run.
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Figure 60: The ratio of the efficiency values from the pure pythia samples used in the anlay-
sis (orange) and HIJING embedded samples (green) as a function of pr for different rapidity
ranges. Red dashed lines indicate the minimum pt bin boundaries actually used in the analysis.
Samples are prompt /¢ and boosted as the 1st run.
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Figure 61: The efficiency values from the pure pythia samples used in the anlaysis (orange)
and HIJING embedded samples (green) as a function of pt for different rapidity ranges. Red
dashed lines indicate the minimum pr bin boundaries actually used in the analysis. Samples

are non-prompt ]/ and boosted as the 1st run.
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Figure 62: The ratio of the efficiency values from the pure pythia samples used in the anlay-
sis (orange) and HIJING embedded samples (green) as a function of pr for different rapidity
ranges. Red dashed lines indicate the minimum pr bin boundaries actually used in the analysis.
Samples are non-prompt J/ip and boosted as the 1st run.
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9.3 Data and Monte Carlo comparisons for dimuons

In order to trust the acceptance and efficiency values obtained from Monte Carlo simulations,
the basic kinematic distributions for the J/¢ candidates in data and MC are compared.

Figure 63 and figure 64 show the comparison between data (1st run and 2nd run) and simula-
tion (prompt and non-prompt J/ip)of the invariant mass, rapidity in CM frame, and azimuthal
angle distributions.

For the dimuon invariant mass distributions, there are no backgrounds in MC samples because
we are using pp boosted samples without embedding procedure. In the rapidity distributions,
the overall shapes of DATA, prompt MC, and non-prompt MC are different and this can be
understood that actual data is the combination of prompt and non-prompt J/i with proper
B-fraction. More proper comparison can be done after separating prompt and non-prompt in
data as shown in fig 67. Lastly, the ¢ distributions agree well.

Fig 65 shows the pr distribution of raw data and reconstructed candidates in MC. Here, data
includes background, so they show discrepancies especially in lower pr region, when we com-
pare the distribution in the mass region 2.6 < my, < 3.5GeV/c? (left), and signal region
295 < my, < 3.25GeV/c? (middle), and signal regions in 2.95 < my, < 3.25GeV/c? with
pr > 3 GeV/c (right).

Fig 66 show the pr distribution of prompt and non-prompt yields extracted from the fit pro-
cedure and reconstructed candidates in MC in 1.5 < ycm < 1.93. Left plot shows the pr
distributions in pt < 30 GeV/c and right plot shows the distributions in 3 < pr < 30 GeV/c.
Even after background are subtracted in data, they still show discrepancies in pt < 3 GeV/c,
They rather agree in 3 < pr < 30 GeV/c. Another comparison can be done after acceptance
and efficiency correction as shown in fig 68.
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Figure 63: Data and MC comparison for the invariant mass distribution

Fig 67 and Fig 68 show the transverse momentum and rapidity distributions for prompt and
non-prompt J/. There yields from data, with acceptance and efficiency fully corrected, are
compared to the generated distributions in Monte Carlo simulations. Kinematic ranges of J/i
used in the analysis are selected which correspond to —2.4 < ycpy < 193 and 0 < pr <
30 GeV/c and binning are chosen same as the cross-section measurements. The discrepancies of
pr distributions between DATA and MC are 1-18% for prompt J/¢ and 1-12% for non-prompt
J/¢ in pr. In rapidity distributions, differences are 1-14% for prompt J/¢ and 1-10% for non-
prompt J/¢. The rapidity distributions for the same pr range 6.5 < pr < 30GeV/c are also
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Figure 64: The rapidity(left) and azimuthal angle(right) distributions of J/{ candidates in real
data compared to the reconstructed distributions in Monte Carlo simulations.
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Figure 65: pr distribution of J /i candidates in real data compared to the reconstructed distribu-
tions in Monte Carlo simulations. Distributions are for the mass range 2.6 < 1y, < 3.5GeV/c?

(left), and signal region 2.95 < m,;, < 3.25 GeV/c? (middle), and 2.95 < my, < 3.25 GeV/c?
with pr > 3 GeV/c (right).
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Figure 66: pr distribution of raw yields of prompt and non-prompt J/¢ extracted from the
tit compared to the reconstructed distributions in Monte Carlo simulations. Distributions in
pr < 30 GeV/c (left) and 3 < pr < 30 GeV/c (right).
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07 checked to investigate the rapidity-dependent shape more clearly and displayed in Fig 69.
e0s These discrepancies will be considered as a systematic uncertainties of acceptance estimation.
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Figure 67: The transverse momentum distributions of prompt(left) and non-prompt(right) J/¢
from data with acceptance and efficiency corrected and the generated particles in Monte Carlo
simulations within the kinematic range used in the analysis. Top panels are drawn with log-
scale and middle panels are drawn with linear scale. Bottom panels represent their discrepan-
cies.
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ss2  Mass fits and litetime distributions for each rapidity, pr, and E? Fly|>4 bins used for the analysis

s4s  are plotted here.
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Figure 70: Mass fit for —2.4 < v, < —1.97 and 1.03 < yy,, < 1.46, for the different transverse
momentum 3.0 < pt < 6.5,6.5 < pr < 10, and 10 < pt < 30 GeV/c bins for the 1st run.
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transverse momentum 6.5 < pt < 10, and 10 < pr < 30 GeV/c bins for the 1st run.
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Figure 75: Lifetime fit for —1.67 < y;, < —1.37 and 0.43 < yj,, < 0.73, for the different
transverse momentum 6.5 < pt < 10, and 10 < pt < 30 GeV/c bins for the 1st run.
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Figure 76: Mass fit for —1.37 < v, < —0.97 and 0.03 < y;,, < 0.43, for the different transverse
momentum 6.5 < pr < 10, and 10 < pr < 30 GeV/c bins for the 1st run.

T T T [T ol £ [T
E [ CMS Preliminary E10'E CMS Preliminary EW CMS Preliminary E10°E CMS Preliminary 3
= 10°E pPb\[S,,=5TeV E! = PPD\[Sy, = 5 TeV = PPD \[5y, = 5 TeV = PPb \[Syy, = 5 TeV
g L= 2 17<y,, <097 g L2t ey, <007 g L2t o<y, <o g L2 oosey, <0s
4 65<p, <10Gevic < 10<p, <30 Gevie < 65<p, < 10GeVic e
- Cont 0:100% g gy 3 g
8 ® data 8 3 8
° —total it o © ©
pompt
non-promp oL oL 4 L
100 background = 10 << background 10 10%
10 4 10 10F E! 10
- — NPT _ I =
& 4 Xldot = 70,0315 & ot = 33.10/57 g3 & 3 . Xildot = 60,6936
2 . E| P 2 : :
e 1 N,
ES N E E 4 P! St
2 . 2 .
ya E 2 E
3 3
R L I W R B R I LI W R I} P T N AR B L R R I
13y (mm) 13y (mm) Ly (M) 1y (mm)

Figure 77: Lifetime fit for —1.37 < y;; < —0.97 and 0.03 < yj,, < 0.43, for the different
transverse momentum 6.5 < pr < 10, and 10 < pt < 30 GeV/c bins for the 1st run.
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Figure 78: Mass fit for —0.97 < y;,; < —0.47 and —0.47 < y;, < 0.03, for the different
transverse momentum 6.5 < pr < 10, and 10 < pt < 30 GeV/c bins for the 1st run.
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Figure 79: Lifetime fit for —0.97 < vy, < —0.47 and —0.47 < y;,, < 0.03, for the different
transverse momentum 6.5 < pt < 10, and 10 < pt < 30 GeV/c bins for the 1st run.
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Figure 80: Mass fit for 1.97 < y;,, < 2.4 and —1.46 < y;,, < —1.03, for the different transverse
momentum 3.5 < pr < 6.5,6.5 < pr < 10, and 10 < pt < 30 GeV/c bins for the 2nd run.
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Figure 83: Lifetime fit for 1.67 < yj,, < 1.97 and —1.03 < y;, < —0.73, for the different
transverse momentum 6.5 < pr < 10, and 10 < pt < 30 GeV/c bins for the 2nd run.
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Figure 84: Mass fit for 1.37 < y;,, < 1.67 and —0.73 < y;,, < —0.43, for the different transverse
momentum 6.5 < pr < 10, and 10 < pr < 30 GeV/c bins for the 2nd run.
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Figure 85: Lifetime fit for 1.37 < yj;, < 1.67 and —0.73 < y;,, < —0.43, for the different
transverse momentum 6.5 < pr < 10, and 10 < pt < 30 GeV/c bins for the 2nd run.
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Figure 86: Mass fit for 0.97 < y;,, < 1.37 and —0.43 < yj,, < —0.03, for the different transverse
momentum 6.5 < pr < 10, and 10 < pr < 30 GeV/c bins for the 2nd run.
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Figure 87: Lifetime fit for 0.97 < yj;, < 1.37 and —0.43 < y;,, < —0.03, for the different
transverse momentum 6.5 < pr < 10, and 10 < pt < 30 GeV/c bins for the 2nd run.
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Figure 88: Mass fit for 0.47 < yj,, < 0.97 and —0.03 < yj,, < 0.47, for the different transverse
momentum 6.5 < pr < 10, and 10 < pr < 30 GeV/c bins for the 2nd run.
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Figure 90: Mass fit for —2.4 < v, < —1.97 and 1.03 < yj,, < 1.46, for the different transverse

momentum 3.0 < pr < 6.5, 65 < pr < 10, and 10 < pt < 30GeV/c bins for the 1st run.

Transvers energy in HF is 0 < E?FWM < 20GeV.
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Figure 91: Lifetime fit for —2.4 < y;;, < —1.97 and 1.03 < y;, < 1.46, for the different

transverse momentum 3.0 < pr < 6.5,6.5 < pr < 10, and 10 < pr < 30GeV/c bins for the 1st

run. Transvers energy in HF is 0 < E?FW|>4 < 20GeV.
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Figure 92: Mass fit for —2.4 < v, < —1.97 and 1.03 < yj,, < 1.46, for the different transverse

momentum 3.0 < pr < 6.5, 65 < pr < 10, and 10 < pt < 30GeV/c bins for the 1st run.

Transvers energy in HF is 20 < E? >4 — 30 Gev.
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Figure 93: Lifetime fit for —2.4 < y;;;, < —1.97 and 1.03 < y;,, < 1.46, for the different

transverse momentum 3.0 < pr < 6.5,6.5 < pr < 10, and 10 < pr < 30GeV/c bins for the 1st

run. Transvers energy in HF is 20 < E? Fly[>4 < 30GeV.
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Figure 94: Mass fit for —2.4 < v, < —1.97 and 1.03 < yj,, < 1.46, for the different transverse
momentum 3.0 < pr < 6.5, 65 < pr < 10, and 10 < pt < 30GeV/c bins for the 1st run.
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Figure 95: Lifetime fit for —2.4 < y;;, < —1.97 and 1.03 < y;, < 1.46, for the different
transverse momentum 3.0 < pr < 6.5,6.5 < pr < 10, and 10 < pr < 30GeV/c bins for the 1st

HF

run. Transvers energy in HF is 30 < ET >4 < 120GeV.
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Figure 100: Mass fit for —1.97 < y;,, < —1.37 and 0.43 < y;,; < 1.03, for the different transverse
momentum 6.5 < pt < 10, and 10 < pr < 30GeV/c bins for the 1st run. Transvers energy in
HF is 30 < EXF1>* < 120 Gev.,
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Figure 102: Mass fit for —1.37 < y;, < —0.47 and —0.47 < yj,, < 0.43, for the different

transverse momentum 6.5 < pr < 10, and 10 < pt < 30GeV/c bins for the 1st run. Transvers

energy in HF is 0 < EZF11>* < 20 Gev.
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Figure 104: Mass fit for —1.37 < yj, < —0.47 and —0.47 < y;, < 0.43, for the different

transverse momentum 6.5 < pt < 10, and 10 < pr < 30GeV/c bins for the 1st run. Transvers

energy in HF is 20 < EXFI>* < 30 Gev.
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Figure 107: Lifetime fit for —1.37 < vy, < —0.47 and —0.47 < y;,p < 043, for the different

transverse momentum 6.5 < pt < 10, and 10 < pr < 30GeV/c bins for the 1st run. Transvers

energy in HF is 30 < EXFI">* < 120 Gev.
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Figure 108: Mass fit for 1.97 < yj;, < 2.4 and —1.46 < y;,, < —1.03, for the different transverse

momentum 3.0 < pr < 6.5, 6.5 < pr < 10, and 10 < pr < 30GeV/c bins for the 2nd run.

Transvers energy in HF is 0 < E?FWM < 20GeV.
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Figure 109: Lifetime fit for 1.97 < yj;, < 2.4 and —1.46 < y;,; < —1.03, for the different

transverse momentum 3.0 < pr < 6.5, 6.5 < pr < 10, and 10 < pt < 30 GeV/c bins for the 2nd

run. Transvers energy in HF is 0 < E?FW|>4 < 20GeV.
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Figure 112: Mass fit for 1.97 < yj;, < 2.4 and —1.46 < y;,, < —1.03, for the different transverse
momentum 3.0 < pr < 6.5, 6.5 < pr < 10, and 10 < pr < 30GeV/c bins for the 2nd run.
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Figure 114: Mass fit for 1.37 < y;,, < 1.97 and —1.03 < y;,, < —0.43, for the different transverse
momentum 6.5 < pr < 10, and 10 < pr < 30 GeV/c bins for the 2nd run. Transvers energy in
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Figure 116: Mass fit for 1.37 < y;,, < 1.97 and —1.03 < y;,, < —0.43, for the different transverse
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Figure 117: Lifetime fit for 1.37 < vy, < 1.97 and —1.03 < yj,, < —0.43, for the different

transverse momentum 6.5 < pt < 10, and 10 < pt < 30 GeV/c bins for the 2nd run. Transvers
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Figure 118: Mass fit for 1.37 < y;,, < 1.97 and —1.03 < yj,, < —0.43, for the different transverse
momentum 6.5 < pr < 10, and 10 < pr < 30 GeV/c bins for the 2nd run. Transvers energy in
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Figure 119: Lifetime fit for 1.37 < yj;, < 1.97 and —1.03 < y;, < —0.43, for the different
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Figure 120: Mass fit for 0.47 < y;,, < 1.37 and —0.43 < y;,, < 0.47, for the different transverse
momentum 6.5 < pr < 10, and 10 < pr < 30 GeV/c bins for the 2nd run. Transvers energy in

HFis 0 < EXFIP4 < 20 Gev.
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Figure 121: Lifetime fit for 0.47 < vy, < 1.37 and —0.43 < yj,, < 047, for the different

transverse momentum 6.5 < pr < 10, and 10 < pt < 30 GeV/c bins for the 2nd run. Transvers
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Figure 122: Mass fit for 0.47 < v, < 1.37 and —0.43 < y;,, < 0.47, for the different transverse

momentum 6.5 < pr < 10, and 10 < pr < 30GeV/c bins for the 2nd run. Transvers energy in

HF is 20 < EXF1>% < 30 Gev.
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Figure 126: Mass fit for —2.4 < y;,, < —1.97 for the several transverse momentum ranges from
the 1st run.
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Figure 127: Lifetime fit for —2.4 < y;,, < —1.97 for the several transverse momentum ranges
from the 1st run.
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Figure 128: Mass fit for —1.97 < v, < —1.47 for the several transverse momentum ranges
from the 1st run.
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Figure 129: Lifetime fit for —1.97 < y;,, < —1.47 for the several transverse momentum ranges
from the 1st run.
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Figure 130: Mass fit for —1.47 < y;,, < —0.47 for the several transverse momentum ranges
from the 1st run.
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Figure 131: Lifetime fit for —1.47 < y;,, < —0.47 for the several transverse momentum ranges
from the 1st run.
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Figure 132: Mass fit for —0.47 < y;,, < 0.53 for the several transverse momentum ranges from

the 1st run.
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Figure 133: Lifetime fit for —0.47 < y;,;, < 0.53 for the several transverse momentum ranges
from the 1st run.
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Figure 136: Mass fit for 1.03 < yj,, < 1.93 for the several transverse momentum ranges from

the 1st run.
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Figure 137: Lifetime fit for 1.03 < y;,, < 1.93 for the several transverse momentum ranges from

the 1st run.
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Figure 138: Mass fit for 1.97 < y,,, < 2.4 for the several transverse momentum ranges from the
2nd run.
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Figure 139: Lifetime fit for 1.97 < y;,;, < 2.4 for the several transverse momentum ranges from
the 2nd run.
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Figure 140: Mass fit for 1.47 < yj,, < 1.97 for the several transverse momentum ranges from
the 2nd run.
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Figure 141: Lifetime fit for 1.47 < y;,, < 1.97 for the several transverse momentum ranges from
the 2nd run.
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Figure 142: Mass fit for 0.47 < yj,, < 1.47 for the several transverse momentum ranges from
the 2nd run.
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Figure 143: Lifetime fit for 0.47 < y,, < 1.47 for the several transverse momentum ranges from
the 2nd run.
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Figure 145: Lifetime fit for —0.53 < y;,, < 0.47 for the several transverse momentum ranges
from the 2nd run.
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Figure 147: Lifetime fit for —1.03 < y;,, < —0.53 for the several transverse momentum ranges
from the 2nd run.
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Figure 148: Mass fit for —1.93 < v, < —1.03 for the several transverse momentum ranges
from the 2nd run.
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Figure 149: Lifetime fit for —1.93 < y;,, < 1.03 for the several transverse momentum ranges
from the 2nd run.
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«« B Unfolding study

ess  When we investigate the efficiency by Monte Carlo sample, numerator is filled with the re-
ss6 constructed pr and denominator is filled with the generated pt. Therefore, the effect of the
7 bin migration (a J/i being reconstructed at a slightly different pt due to finite resolution) is
sss  studied.

ss0  Figure 150 and figure 151 show the generated vs. reconstructed pr distributions before binning.
sso  For the right plots, the first pr bin region (6.5-7.5 GeV/c) is zoomed in and pointed by the red
st dashed regions.
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Figure 151: reco pr vs gen pr form non-prompt J/1.

es2 Figure 152 shows the matrix of the generated vs. reconstructed pr distributions.

ess  The following plots show the distribution of prt of reconstructed particles subtracted by pr of
s+ the generated particles and then divided by pr of the generated particles.



131

3035 3035

1430

1430

114 1114

g g

S esu S esu
[ Q
e e

o 8595 o 8595
3 3

L 7585 o 7585
4 4

6575 6575

365 365

03 03

| | | | | | | | | | | |
365 6575 7585 8505 9.5-11 1-14 14-30 30-35 3-65 6575 7585 8595 9511 11-14 14-30 30-35
GEN P, (GeVic) GEN P, (GeVic)

Figure 152: Matrix of generated versus reconstructed pr for the prompt J/¢ (Left) and non-
prompt J/ip (Right) in the MC used in this analysis. The axis labels display the pr range of the
bin.

Enes 14261 Enves 12852 Enries 10265
F Mean  -0.0004404 F Mean 00002689 F Mean -0.0003821
[ prompt MC RMS 001228 [ prompt MC RMS 001128 r prompt MC RMS 001109
12001~ 6.5<p <7.5 GeVic 12001~ 7.5<p,<8.5 GeV/c 8.5<p <9.5 GeV/c
— L mean : -0.00046 — [ mean : -0.00028 ® — mean : -0.00041
2 10001 5igma : 0,01167 2 10001~ 5igma : 0.01066 = [ sigma:001012 44
& [ e & [ o & 800 e ]
o [ o) L oS r
= 800— = 800 = L
e [ p [ - [
z r z r z 600~
& L @ L w L
Q 600 Q600 o [
o r o [ o L
Q L Q [ Q 400
& 400 & a00f o F
x r x r x r
200 200 2000~
Lod ool AT Ll Loiliiil AT oot L1 Lolid AT D, Ly iliis
167080.06:0.04-0.02 0 002 0.04 0.06 0.08 0.1 $1°0.080.06:0.04-0.02 0 002 0.04 0.06 0.08 0.1 910.080.060.04-002 0 0.02 004 0.06'0.08 0.1
GENp_ (GeVrc) GENp_ (GeVic) GENp_ (GeVlc)
Envies 10328 Enves 9862 Enres 6204
F Mean -2.133¢.05 i Mean 00001918 700 Mean -0.0004769
prompt MC RMS 001085 [ prompt MC RMS 0.01081 r prompt MC RMS 001127
L 9.5<pT<11 GeVic 10007— 11<pT<]_4 GeVic 500; 14<pT<30 GeVic
— [ mean : -0.00009 # — r mean : -0.00021 —_ [ mean : -0.00046 #
= 800 sigma:0.01004 44 S gool_ sigma:0.00989 ¢ = s00f sigma:0.01011 ¢
z gma: 0. Z  soo[- sigma: 0. z [ sigma: 0. ¢
o L < [ S [
T r =2 L = 400
S 600 2 600 z r
i) w F w r
Q. [ Q@ F @ 300
o o t o r
Q 400~ Q 400 Q E
b [ b [ L 200F
B g | o F
2001 200~ £
I ANTNNTD gl I AT, gl Coiliigle AT, gl
1°0,08°0.06:0.04-0.02 0 002 0.04 0.06 0.08 0.1 1°0.080.06:0.04-0.02 0 002 0.04 0.06 0.08 0.1 -0.1-0.08-0.06-0.04-0.02 0 0.02 0.04 0.06 0.08 0.1
GENp_ (GeVrc) GENp_ (GeVic) GENp, (GeVic)

Figure 153: [Recopt — GENpt]/GENpr distributions of each pr bins for prompt J/¢ official MC
sample.
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s C Tag and Probe plots

es6 In this appendix section, the invariant mass fittings used for Tag and Probe anlaysis are col-
es7 lected. For each figure, top left plot is passing probe pair, top right plot is failing probe pair,
es8  bottom left plot is total pair and the bottom right box is fitting parameters. Each figure is used

eso for one bin of efficiency distribution.
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C Tag and Probe plots
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Figure 159: Mass distribution of tag-probe pair for Muon ID and trigger cuts in Data (Top) and
MC (Bottom), in |77| > 1.6 and the lowest pr bin.
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Figure 161: Mass distribution of tag-probe pair for tracking efficiency in Data (Top) and MC
(Bottom), in |77| < 1.2 and the lowest pr bin.
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Figure 162: Mass distribution of tag-probe pair for tracking efficiency in Data (Top) and MC
(Bottom), in || < 1.2 and the highest pt bin.
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Figure 163: Mass distribution of tag-probe pair for tracking efficiency in Data (Top) and MC
(Bottom), in 1.2 < |¢| < 1.6 and the lowest pt bin.
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Figure 165: Mass distribution of tag-probe pair for tracking efficiency in Data (Top) and MC
(Bottom), in |77 > 1.6 and the lowest pr bin.
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D Fitting parameters

This section gives an overview of the 2D fits to invariant mass and lifetime distributions. Re-
sults are shown as a function of J/¢ pr in 8 rapidity bins considered in the analysis. Also, dis-
tributions of the 1st run and 2nd run are plotted separately, in order to check the consistency of
two datasets.

Figure ?? shows the raw yields of the inclusive J/¢ extracted fromt the fits. The b-fraction
increases strongly with pr for all rapidity bins.

Figure 168 shows the b-fraction, the fraction of the non-prompt J /¢ production originating from
b-hadron decays as a function of J/i pr in several rapidity bins considered in the analysis. The
b-fraction increases strongly with p for all rapidity bins.

Fig ?? and ?? show the yield of prompt and non-prompt J/i extracted from ithe 2D fits respec-
tively.

Fig 171 shows the width of the signal functions in dimuon invariant mass distributuions that
is the sum of the one Crystal Ball and one Gaussian, as functions of pr in different rapidity
ranges. The width becomes wider as it goes to forward or backward rapidity range while it
shows no strong pr dependence.

Fig 172 shows the slope of an exonential functions for backgrounds in mass distributions, as
functions of pr in several rapidity bins. Fig 173 shows the slope of an exonential functions
describing lifetime distribution of non-prompt J/1, as functions of pt in several rapidity bins.
This parameter is first fitted to non-prompt J/p MC template, and then fitted value is given as
a initial value when we actually fit to data.

Fig 174 shows the width of the resolution functions that is the combination of two Gaussian and
corresponds to the lifetime distributions of prompt J/i. The width of one Gaussian is fixed to
MC, and that of the other Gaussian is left free and fixed to data. This paramter is almost unity
for the whole kinematic ranges, and this guarantee the fitting function describes the resolution
shape well.
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Figure 167: The raw yield of the inclusive J/¢ as a function of pr in several rapidity bins for the
1st run(red) and the 2nd run(blue).
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Figure 169: The prompt J/ yields as a function of pr in 8 rapidity bins used in the analysis for

the 1st run(red) and the 2nd run(blue).
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Figure 170: The non-prompt J/ip yields as a function of pt in 8 rapidity bins used in the analysis

for the 1st run(red) and the 2nd run(blue).
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Figure 173: Slope of the exponential function for lifetime distributions of non-prompt J/¢ as a
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Figure 174: The width of the resolution function for lifetime distributions of prompt J/i as a
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« E Acceptance Systematics

es7 Figure 175-182 represent the acceptance distributions for prompt J/i in each pr and rapidity
ss8  bins, and that of non-prompt J/¢ are illustrated in Figure 183-190.
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Figure 176: Acceptance distributions for prompt ]/ of the 1st run period in bins of pt over the
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Figure 178: Acceptance distributions for prompt ]/ of the 1st run period in bins of pt over the
range of —0.47 < |ypap| < 0.43. First four panels should be ignored because these are out of
the analysis kinematic range.
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Figure 179: Acceptance distributions for prompt J/4 of the 1st run period in bins of pt over the
range of 0.43 < |yrap| < 1.03. First four panels should be ignored because these are out of the
analysis kinematic range.
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Figure 180: Acceptance distributions for prompt J/4 of the 1st run period in bins of pt over the
range of 1.03 < |ypap| < 1.46. First three panels should be ignored because these are out of the

analysis kinematic range.
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Figure 181: Acceptance distributions for prompt J/4 of the 1st run period in bins of pt over the
range of 1.46 < |y ap| < 1.93. First panel should be ignored because it is out of the analysis
kinematic range.
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Figure 182: Acceptance distributions for prompt J/4 of the 1st run period in bins of pt over the
range of 1.93 < |yrap| < 2.40.
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Figure 184: Acceptance distributions for non-prompt J/¢ of the 1st run period in bins of pr
over the range of —1.97 < |ypap| < —1.37. First panel should be ignored because it is out of
the analysis kinematic range.
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Figure 186: Acceptance distributions for non-prompt J/¢ of the 1st run period in bins of pr
over the range of —0.47 < |yrap| < 0.43. First four panels should be ignored because these are
out of the analysis kinematic range.
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Figure 187: Acceptance distributions for non-prompt J/¢ of the 1st run period in bins of pr
over the range of 0.43 < |yrap| < 1.03. First four panels should be ignored because these are
out of the analysis kinematic range.
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Figure 188: Acceptance distributions for non-prompt J/¢ of the 1st run period in bins of pr
over the range of 1.03 < |y ap| < 1.46. First three panels should be ignored because these are
out of the analysis kinematic range.
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Figure 189: Acceptance distributions for non-prompt J/¢ of the 1st run period in bins of pr
over the range of 1.46 < |yrap| < 1.93. First panel should be ignored because it is out of the
analysis kinematic range.
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Figure 190: Acceptance distributions for non-prompt J/¢ of the 1st run period in bins of pr
over the range of 1.93 < |yrap| < 2.40.
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