

Recent femtoscopy results from ALICE

Adam Kisiel (Faculty of Physics, Warsaw University of Technology)

for the **ALICE** Collaboration

Research funded by Polish National Science Center under grant No. 2014/13/B/ST2/04054

Adam Kisiel (WUT) XLVI International Symposium on Multiparticle Dynamics 2016, Jeju Island, Korea, 29 Aug 2016

Heavy-ion collision evolution

Thermal emission from collective medium

- φ φ_r ftm] 10_x velocity direction -10
- A particle emitted from a medium will have a collective velocity $\beta_{\rm f}$ and a thermal (random) one $\beta_{\rm t}$
 - As observed p_T grows, the region from where pairs with small relative momentum can be emitted gets smaller and shifted to the outside of the source

Reference frames for femtoscopy

long

$$m_{\rm T} = \sqrt{k_{\rm T}^2 + m_{\pi}^2}$$

Longitudinally Co-Moving System (LCMS):

 $p_{1,long} = -p_{2,long}$

 For charged pions measurement in 3 dimensions, giving 3 independent sizes in Longitudinally Co-Moving System

- The Bertsch-Pratt decomposition of *q*:
 - Long along the beam: sensitive to longitudinal dynamics and evolution time
 - Out along $k_{\rm T}$: sensitive to geometrical size, emission time and space-time correlation
 - Side perpendicular to Long and Out: sensitive to geometrical size
- For statistically challenged analyses, measurement in one dimension (giving only one size) in Pair Rest Frame

Expectations for the LHC

- Lessons from RHIC:
 - "Pre-thermal flow": strong flows already at $\tau_0=1 \text{ fm/c}$
 - EOS with no first-order phase transition
 - Careful treatment of resonances important

- Extrapolating to the LHC:
 - Longer evolution gives larger
 system → all of the 3D radii grow
 - Stronger radial flow → steeper $k_{\rm T}$ radii dependence
 - − Change of freeze-out shape → lower R_{out}/R_{side} ratio

Model multiplicity and m_{T} dependence

For high multiplicity AA collisions where hydro is applicable:

- Strong flows result in clear m_T
 dependence (power-law)
- Dependence is most steep in *long*
- All radii scale
 linearly with cube
 root of final state
 multiplicity

AK, M.Gałażyn, P.Bożek; Phys.Rev.C90 (2014) 6, 064914 Island, Korea, 29 Aug 2016

ALICE Data on radii vs. centrality and k_T

- Femtoscopic radii vs. $k_{\rm T}$ for 7 centrality classes in central rapidity region
- Radii universally grow with event multiplicity and fall with pair momentum
 - Both dependencies in agreement with calculations from collective models (hydrodynamics), both quantitatively and qualitatively
- When compared to results from RHIC all expected trends visible (larger size, steeper $k_{\rm T}$ dependence, $R_{\rm out}/R_{\rm side} \sim 1$)

Linear multiplicity scaling of radii

ALICE

- Radii in 3 directions and all pair momentum ranges scale linearly with $dN_{\rm ch}/d\eta^{1/3}$
- Slope parameters of this fit show power-law behavior, similar to hydrodynamics (long steepest)

Phys.Rev. C93 (2016) no.2, 024905

Symposium on Multiparticle Dynamics 2016, Jeju Island, Korea, 29 Aug 2016

Freeze-out shape evolution

- Values of R_{out}/R_{side} below unity observed, decrease with centrality
- Reproduced by hydrodynamics
- Hydro interpretation: space-time correlation at freeze-out important – freeze-out changes from outside-in or flat at RHIC to inside-out at LHC

Femtoscopy in small systems

- Measurement for "small" systems: p+p and p-Pb.
 - What's the "size" for "reference" systems?
 - Need precise and differential data on space-time characteristics of particle production in "elementary" systems
 - Significant multiplicities, comparable to peripheral heavy-ion data, now in p+p and p-Pb → Directly compare p+p and AA (onset of "collectivity" ?)
- p+p or pA really a "reference" system?
- Size difference really significant? or just reflects multiplicity?
- Questions fundamental to interpretation of AA data

Unique measurement

- Unique analysis of pion femtoscopy in elementary collisions from ALICE
 - Three collision energies
 - Detailed $k_{\rm T}$ dependence
 - Detailed multiplicity dependence
- Behavior in heavy-ions is not a simple scaling of p+p, as suggested at RHIC
- Many aspects of the measurement not understood or predicted
- Correlation not Gaussian comparison to AA less straightforward

Radii vs. $dN_{ch}/d\eta$

- Radii scale linearly with $dN_{ch}/d\eta^{1/3}$ for 3 dimensions and all pair momentum ranges
- Radii from all collision energies follow the same trend $(\chi^2/N_{dof} < 1.0$ for the fit); lowest multiplicity R_{out} points (all energies) slightly below.
- Radii grow with multiplicity for R_{side} and R_{long}
- Behavior in R_{out} is different: has flat or decreasing trend at high k_{T} .

1D size in p-Pb

- 1D analysis performed for p+p, p-Pb and Pb-Pb
- Uses 2-pion and 3-pion formalism, with different sensitivity to backgrounds
- p-Pb results 10-20% higher than p+p at similar multiplicity, up to 40% smaller than Pb-Pb
- Comparing only LHC results, p+p and p-Pb not on the "AA line" from lower energies
- Clearly different physics (initial state?) in small systems

- Analysis of pion femtoscopcy in 3D sensitive to collectivity signatures
- Hydro predictions are comparable to high-multiplicity p-Pb in Side and Long and overestimate Out
- $k_{\rm T}$ dependence similar in models and data
- Lower initial size brings models closer to data
- Interpretation still an open question

p+p and pA: Comparison with AA

- Femtoscopic radii scale approximately with cube root of multiplicity.
- Scaling for p+p is clearly different from heavy ions.
- Radii from p-Pb collisions agree with p+p for low multiplicities and start to diverge at higher multiplicities.
- Interpretation of the p-Pb data is still an open question.
- p-Pb data provide important constraints on the understanding of initial and final states in p+p, p-Pb, and Pb-Pb collisions.

m_{T} scaling for heavier particles

Collectivity with heavier particles

- The $k_{\rm T}(m_{\rm T})$ dependence is tested with heavy mesons (neutral and charged kaons)
- The 3D K_s and K_{th} results show breaking of m_T scaling effect of rescattering?
- Non-trivial data analysis for 3D K_{0_s} (no analytic functional form for fitting QS+Strong femto signal)

Emission time estimate

- Evolution time estimated with analytical form of $R_{long}(k_T)$
- Longer time for kaons, when compared to pions: model interpretation – influence on kaon evolution time from rescattering via K*

Femtoscopy and strong interaction

• Strong interaction for the pair gives correlation function (the Lednicky&Lyuboshits analytic formula for *C*):

$$C(k^*) = 1 + \sum_{s} \rho_s \left[\frac{1}{2} \left| \frac{f^s(k^*)}{r_0} \right|^2 \left(1 - \frac{d_0^s}{2\sqrt{\pi}r_0} \right) + \frac{2\Re f^s(k^*)}{\sqrt{\pi}r_0} F_1(Qr_0) - \frac{\Im f^s(k^*)}{r_0} F_2(Qr_0) \right]$$

- Direct dependence on parameters of strong interaction
 - Complex singlet and triplet scattering length f_0 , the effective radius $d_0 \rightarrow$ can be used to measure cross-sections at low k*
- Possibility to measure f₀, d₀ (and in consequence → cross-section) for all pairs produced abundantly at LHC
 - Some cross-sections were never measured (and probably never will be) in dedicated experiments
 - Crucial information for the entire nuclear physics field

R. Lednicky and V. L. Lyuboshits, Sov. J. Nucl. Phys. 35, 770 (1982).

$\Lambda\overline{\Lambda}$ and $p\overline{\Lambda}$ correlation functions

- Wide negative correlation observed, consistent with annihilation in the strong FSI
- Annihilation not limited to particle-antiparticle systems!
- Correlation strength increases with decreasing multiplicity (consistent with decrease of the system size)
- Quantitative analysis requires careful consideration of the residual correlations (feed-up from pp, correlations with $\overline{\Sigma}_0$ and others)

Correlations for K⁰_S-K^{ch}

• Correlation function from strong interaction well described by theoretical formula, dominated by $a_0(980)$ resonance, sensitive to the exact values of resonance parameters

Radii for K⁰_S-K^{ch} correlations

- Radii for K⁰_S-K^{ch} expected same as in K⁰_S-K⁰_S and K^{ch}-K^{ch}
- ALICE data favors Achasov a₀ resonance parameters

Adam Kisiel (WUT) XLVI International Symposium on Multiparticle Dynamics 2016, Jeju Island, Korea, 29 Aug 2016

Summary

- Heavy-ion collisions driven by space-time considerations and system evolution → size of the system fundamental in the interpretation of the system as "Quark-Gluon Plasma"
- Femtoscopy measures the size of the system → important constraints on system dynamics and Equation of State at RHIC and at the LHC
- Measurements in p+p and pA \rightarrow are they really a "reference"?
- pA data an intermediate step between p+p and AA?
- Femtoscopy for heavier particles sensitive to rescattering
- First results from measurement of strong interaction parameters via femtoscopy give qualitatively unique information