Hard Diffraction at Colliders

Rafał Staszewsk

Introduction

Past

Present

Future

Hard Diffraction at Colliders

Rafał Staszewski

Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences (IFJ PAN Cracow)

ISMD 2016

29 August – 2 September 2016, Jeju, Korea

Contents

Hard Diffraction at Colliders	
Introduction	
	1 Introduction
	2 Past
	B Present
	4 Future

Diffraction

Hard Diffraction at Colliders

Rafał Staszewski

Introduction

Past

Present

Future

Diffractive topologies

- Diffractive signatures
 - large rapidity gap
 - forward (anti-)proton
- Hard diffraction: diffraction + hard scale
- Hard diffractive topologies
 - single diffraction
 - central diffraction (double pomeron exchange)
 - central exclusive production
 - jet-gap-jet

Mechanism of hard diffraction

Hard Diffraction at Colliders

Rafał Staszewski

Introduction

Past

Present

Future

Resolved pomeron

- Ingelman-Schlein model
- pomeron has partonic structure

Soft colour interactions

- QCD-inspired model
- additional gluon exchanges screen the color flow

Kinematics

- ξ momentum fraction of the proton carried by the pomeron
- *t* − squared four-momentum transferred from the proton
- β momentum fraction of the pomeron carried by the interacting parton

Contents

Hard Diffraction at Colliders	
Past	1 Introduction
	2 Past
	3 Present
	4 Future

SPS: diffractive jets

HERA: Diffractive PDFs

- QCD fits
- dominated by gluons
- jet production
- charm production
- measurements with proton tagging and LRG method

Factorisation breaking

Hard Diffraction at Colliders

Rafał Staszewsk

Introduction

Past

Present

Future

- Hard diffractive events rarer than naive extrapolations from HERA
- Suppression factor: gap survival probability
- Origin: additional interactions
- Confirmed in many processes, including photoproduction at HERA

Tevatron: diffractive processes

Tevatron: Jet-gap-jet

11/22

Tevatron: central and exclusive hard diffraction

Contents

Hard Diffraction at Colliders	
	1 Introduction
Present	
	2 Past
	3 Present
	4 Future

Hard diffraction at LHC

Hard Diffraction at Colliders

Rafał Staszewski

Introductio

Past

Present

Future

Diffractive jets

Diffractive W and Z

Rapidity gap at the LHC

low-mass dissociation indistinguishable from no dissociation

detector noise

in high-mass events the gap is outside the calorimeter

particle density fluctuation in non-diffractive events

LHC Forward Proton Tagging

Hard Diffraction at Colliders

Rafał Staszewsk

Introduction

Past

Present

Future

Pile-up

Hard Diffraction at Colliders

Rafał Staszewsk

Introduction

Past

Present

Future

- pile-up: several independent pp interaction in an event
- twofold effect
 - rapidity gap can be filled with particles from other interactions
 - the observed forward (anti-)protons may originate from different interaction than the hard object
- its importance observed already at the Tevatron

- full luminosity of LHC cannot be exploited in vast majority of diffractive measurements (especially for single diffraction)
- dedicated runs needed (but limited time)

Pile-up rejection

Exclusive Higgs & new physics

Hard Diffraction at Colliders

Rafał Staszews

Introduction

Past

Present

Future

- Measurement of exclusive Higgs would require detectors installed in cold LHC region
- The attempts were not successful

- The existing detectors allow measurements of higher masses
- Possibility of new physics searches in two-photon events

Contents

Hard Diffraction at Colliders Rafał Staszewski	
	Introduction
	1 Introduction
Future	
	2 Past
	3 Present
	4 Future

Future Colliders

Hard Diffraction at Colliders

Rafał Staszewski

Introduction

Past

Present

Future

It is important that the forward proton detectors are foreseen and installed as soon as possible

- possible optimisation of the accelerator design
- participation in the development of the safety procedures
- data-taking always starts with low luminosity

Summary and conclusions

Hard Diffraction at Colliders

- Rafał Staszewsk
- Introduction
- Past
- Present
- Future

- Hard diffraction is a well established phenomenon
- Many hard diffractive processes measured at different energies
- Diffractive PDFs known from DDIS at HERA
- QCD factorisation in DDIS
- Factorisation breaking in hadron-hadron interactions
- Details not fully understood
- Jet-gap-jet process described with NLL BFKL
- New measurements with proton tag expected at LHC