Neutron Detector Simulation 2014 / 05 / 30

Korea University Nuclear Physics Lab. BumGon Kim

Back Scattering Rate

• Back Scattering Rate (%)

= {(한 event 내에서 real hit들의 hitTime에 따른 layerNum가 순서대로 정렬되지 않는 경우가 단 한 번이라도 발생한 event의 개수) / (최소 1개 이상의 real hit들을 남긴 event의 개수)} X 100

(%)	100 MeV	300 MeV
3 MeV	13.0699	53.8375
5 MeV	9.62404	48.7303
7 MeV	7.29519	43.8372
10 MeV	5.02107	38.11

Real Hits per Event

• Real Hits per event (%)

= {(the number of total real hits) / (the number of events which has at least one real hit)} X 100

Modified Real Efficiency

- In modified real efficiency, 'null events' is not considered.
 - > Null event : An event which remains no real hit
- <u>Modified</u> Real Efficiency (%) = {(Real_good) / (event_number)} × 100
 - Real_good : the number of events satisfying both Beta condn & Geometric condn, and also satisfying (Real incident neutrons) = (Reconstructed incident neutrons) + having at least one real hit
 - ➤ Event_number : 10000 events → The number of events which has at least one real hit

Modified Real Efficiency

- For both cases, higher threshold cases has somewhat higher efficiency.
 - > For 100 MeV cases, a little difference
 - > For 300 MeV cases, pretty much difference
 - Strongly related to back scattering rate? Or hits per event?

Next Step

- Checking veto efficiency using proton beam
- Improving beta condn.
- Checking hitTime distribution

hitTime Distribution

300 MeV

layerNum Vs. hitTime ٠

100 MeV

 $\times 10^{3}$

1000

800

600

400

200

0

8

layerNum

7

-

Veto Efficiency

- Particle : Proton
- Events : 30000
- In the algorithm, the events which deposit energy more than 3 MeV on veto counter are removed.