LAMPS Si-CsI Detector

Young Jin Kim High Energy Nuclear Science Team Rare Isotope Science Project Institute for Basic Science LAMPS Review March 31st, 2014

Low Energy LAMPS Experimental Setup

¹³²Sn + ¹²⁴Sn @ 18.5A MeV **<u>Particle</u>** and <u>Heavy Ion Transport code System (PHITS)</u> event simulation

photon polar angle

(a) Charged particle polar angle distribution.

(c) Neutron polar angle distribution.

Institute for Basic Science

(d) γ polar angle distribution.

0p/Np

0.012

0.008

0.006

0.004

0.002

Si-CsI detector unit coverage of polar angle tuned to be <occupancy> < 0.1

Entries 2736359 Mean 60.5 RMS 33.17

Entries

Mean RMS

793233

86.02

39.1

Low Energy LAMPS Experimental Setup

E_{beam} < 18.5*A* **MeV** For GDR Experiments (to test PDR measurements as well)

25° cone to allow target installation

^{50,54}Ca, ^{68,70,72}Ni, ^{106,112,124,130,132}Sn RI beam + ¹⁹⁷Au/²⁰⁸Pb (stable target) + ¹²C/no target (background control) *could be possible from ISOL

Low Energy LAMPS Experimental Setup

10 cm wide window to allow neutron detection along equator

Cooperate with KOBRA

-Reactions:

 $\begin{array}{l} Photoabsorption \ collisions \\ {}^{106,112,124,130,132}Sn + {}^{197}Au/{}^{208}Pb \\ {}^{68,70,72}Ni + {}^{197}Au/{}^{208}Pb \\ {}^{50,54}Ca + {}^{197}Au/{}^{208}Pb \end{array}$

-Detectors:

γ-array at F3

Spectrometer for beam fragments

($\Delta p/p$ better than 1/1000)

Neutron detector array at 0°

-Measurement:

Excitation energy E* from kinematically complete measurement of all outgoing particles

5

F3

Charged Particle Measurements -Reactions:

Central and peripheral collisions ^{50,54}Ca + ⁴⁰Ca ^{68,70,72}Ni + ⁵⁸Ni ^{106,112,124,130,132}Sn + ^{112,118,124}Sn

F5

LAMPS Si-CsI Detector R&D

RAON

 Total 58 detector units

 (17.5° < θ_{lab} < 77.5°)</td>

 9 x 9 x 0.01 cm³ Si (3 x 3 Pad)

 9 x 9 x 5 cm³ CsI (PMT readout)

 Total 35 detector units

 (78° < θ_{lab} < 150°)</td>

 15 x 15 x 0.01 cm³ Si (3 x 3 Pad)

 15 x 15 x 5 cm³ CsI (PMT readout)

GEANT4 Simulation is going on

Si-CsI detector: (ΔE-E technique for charged particle measurement as well as γ measurement) •Energy resolution from simulation study •Si: 0.5% of FWHM (Energy resolution < 2% required for charged particle)

 CsI: 2.0% of FWHM (Energy resolution < 5% required for max. 30 MeV γray)

Si detector: R&D with Kyungpook Natl. Univ. CsI detector: 1st prototype in preparation

Si Detector R&D

High Energy LAMPS Si-CsI Detector

Institute for Basic Science

size (mm^2)

Z=4

(b)

 E_{tot} (MeV)

High Energy LAMPS Si-CsI Detector Acceptance

RAON

Rare Isotope

Institute for Basic Science

Thank for your attention!

