Azimuthal anisotropy of prompt J/ψ in PbPb collisions in CMS

이기수, 문동호¹, 조미희, 이송교, 김현철, 홍병식 (고려대학교, UIC¹)

contents

- 1. CMS detector
- 2. motivation
- 3. flow
- 4. result
- 5. summary

CMS detector configuration

Calorimeters (Electromagnetic & Hadron)

motivation

 Quarkonia are expected to carry out information on the initial state and the medium effects

- participants of the collision are distributed in an almond shape region
- Due to the length and pressure difference, spatial anisotropy converted into a momentum anisotropy
- this anisotropy is strong evidence for the existence of QGP

flow

azimuthal anisotropy can be described using Fourier series

$$E\frac{d^3N}{dp^3} = \frac{1}{2\pi} \frac{d^2N}{p_t dp_t dy} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos[n(\phi - \Psi_R)] \right)$$

 Ψ_{R} : angle of reaction plane

- reaction plane is defined by the impact parameter b and the beam axis z
- v_1 : direct flow, v_2 : elliptic flow, v_3 : triangular flow and so on

elliptic flow

- how the flow is not uniform in all detections when viewed along the beam-line
- directly reflects the initial spatial anisotropy
- in-plane elliptic flow due to pressure gradient
- out-of-plane elliptic flow due to spectator blocking

Prompt J/ ψ extraction

- CMS collected 150 μb^{-1} in 2011 2.76 TeV PbPb collision
- J/ ψ are reconstructed from $\mu^+\mu^-$ pair
- non-prompt J/ ψ excluded by 2-D fit

HIN-12-001 CMS Collaboration

 $I_{J/\psi}$: pseudo-proper decay length

v₂ calculation

- use prompt J/ ψ yields in each rapidity, p_T, centrality, $\Delta \varphi$

2014_spring_KPS_DaeJeon

comparison with other experiments

- at high p_T, v₂ looks matches with other experiments
- but at low p_T , v_2 are not
- prompt J/ψ contains information of early state before QGP make

summary

- CMS measured elliptic flow of prompt J/ψ at 2.76 TeV PbPb collision in 2011
- The measured prompt J/ ψ v₂, for 10-60 % event centrality, integrated over 6.5 < p_T < 30 GeV/c and |y| < 2.4 is
- 0.054 ± 0.013(stat) ± 0.006(syst)
- a non-zero v_2 is measured in all the kinematic bins studied
- the observed anisotropy shows no significant centrality or rapidity dependence when integrated over rapidity and centrality, respectively

back up

event plane method

