Bottomonia production in pp, pPb and PbPb collisions in CMS

Songkyo Lee (Korea University) for the CMS collaboration

Spring meeting of the Korean Physical Society 2014 Daejeon, Republic of Korea, 23th-25th April 2014

Introduction

- Physics Motivation
- CMS Detector

Y suppression in PbPb collisions

- nuclear modification factor
- PRL 109 (201) 222301

Y in pPb & pp collisions

- single & double ratio
- event-activity dependence
- arXiv:1312.6300 (accepted to JHEP)

Summary

Motivation

Quarkonia

- Bound states of heavy quark and antiquark
- Large mass requires a large momentum transfer in hard gluon-gluon scattering during the early stage of the collisions.

Bottomonia measurement in CMS

- Three Y states are characterized by similar kinematics but different binding energy.
- the excellent momentum resolution of CMS allows separation of all three states.
- decay channel to $\mu^+\mu^-$: clean probe and easy to detect (BR ~ 2.5%)

Resonance	J/ψ	Ψ	Υ(1S)	Υ(2S)	Υ(3S)
Mass [GeV]	3.10	3.68	9.46	10.02	10.36
ΔE [GeV]	0.64	0.05	1.10	0.54	0.20
Radius [fm]	0.25	0.45	0.14	0.28	0.39

different collision systems

Deconfined medium effects in PbPb

- Quark-gluon plasma is formed in central collisions
- Loosely bound states (with smaller binding energies) melt at lower temperature.
 - Sequential melting for different state is predicted.

Cold nuclear matter effects in pPb

- Initial state energy loss, comover break up, modification of nPDF, etc.
- provide a better understanding of the effects from QGP
- CNM itself is a interesting matter.

CMS detector

24th April 2014

Muon Reconstruction

Excellent muon Identification and triggering in the muon system
 Outstanding momentum and vertex resolution of the tracking system

pPb collisions in 2013

Ist pPb run @ LHC in Jan.-Feb. 2013

- $\sqrt{S_{NN}} = 5.02 \text{ TeV}$
- L_{int} = 34.7 nb⁻¹

pp run in 09–14th Feb. 2013

- $\sqrt{S_{NN}} = 2.76 \text{ TeV}$
- L_{int} = 5.4 pb⁻¹
- x20 more statistics than 2011 pp data

Two event-activity variables

- N_{tracks} : charged particle multiplicity in inner tracker ($|\eta| < 2.4$, p_T>0.4 GeV/c)
- E_T^{HF} : raw transverse energy deposited in forward region HF (4<| η |<5.2)

Invariant mass distributions

PRL 109 (2012) 222301

arXiv:1312.6300

Fitting procedure is same in pp, pPb, and PbPb analysis.

• In PbPb, $\Upsilon(2S)$ is mildly suppressed and the peak for $\Upsilon(3S)$ is hardly visible.

PbPb √s_{NN} = 2.76 TeV

 $_{int} = 69 \,\mu b^{-1}; 2.5 < y < 4$

ALICE Preliminary Y(1S

£ ⊈1.4

1.2

0.8

0.6

0.4

0.2

Suppression of Y(nS) in PbPb

KPS spring 2014

Nuclear modification factor

CMS

Υ(1S)

Y(2S)

 $L_{int} = 150 \,\mu b^{-1}$; |y| < 2.4

$$R_{AA} = \frac{\mathcal{L}_{pp}}{T_{AA}N_{\text{MB}}} \frac{\Upsilon(nS)|_{\text{PbPb}}}{\Upsilon(nS)|_{pp}} \frac{\varepsilon_{pp}}{\varepsilon_{\text{PbPb}}}$$

- \blacksquare R_{AA} = 1, No modification compared to pp collisions
- R_{AA} <1, There is a 'suppression'

Centrality integrated results

- $R_{AA}(Y(1S)) = 0.56 \pm 0.08 \text{ (stat.)} \pm 0.07 \text{ (syst.)}$
- $= 0.12 \pm 0.04$ (stat.) ± 0.02 (syst.) $R_{AA}(Y(2S))$
- $R_{AA}(Y(3S))$ $= 0.03 \pm 0.04$ (stat.) ± 0.01 (syst.)

(< 0.10 at 95% CL)

• Y states suppressed sequentially

 $R_{AA}[\Upsilon(1S)] > R_{AA}[\Upsilon(2S)] > R_{AA}[\Upsilon(3S)]$

Double & Single ratios

• Single Ratios

Double Ratios

: excited to ground state

- **pPb vs pp** : Excited states are suppressed more than the ground state in pPb compared to pp.
- PbPb vs pPb: Additional final state effects in PbPb that affect the excited states more than the ground state.

Event activity - E_T^{HF}

Single ratio vs ET

Event activity is measured far from Υ

• Single ratios for both pp and pPb show very weak dependence on E_T .

Single ratio vs Ntracks

Event activity is measured near $\boldsymbol{\Upsilon}$

- Significant decreasing trend with increasing N_{tracks}.
 - Two possible scenarios Y would affect the multiplicity ?
 Multiplicity would affect the Y ?

- PbPb bin has little overlap with pPb, preventing direct comparison.
- In PbPb, centrality dependence is not pronounced.
- In pp and pPb, single ratios are above PbPb

Self-normalized cross-sections

- Rising trends with increasing E_T and N_{tracks}
 - pp : possible interpretation is the multi-parton interactions
 - Pb, PbPb : trends arise from the increase in N_{coll}

 $^{\odot}$ E_T: For each of 3 colliding systems, the slope consistent with ~ 1

- Bottomonia are clean probes of in-medium modification.
- In PbPb, Sequential melting of Y(nS) has been observed.
- In pp & pPb, a significant decrease of excited states production has been observed.
- pp & pPb show a multiplicity dependence.
- A deeper study for the kinematical aspects of Y yields in pp, pPb, and PbPb is needed to understand production mechanisms better.

BACK-UP

24th April 2014

KPS spring 2014

pp, pPb, PbPb run at LHC & CMS

Ist PbPb run @ √S_{NN} = 2.76 TeV

- Nov. Dec. 2010
- Recorded luminosity by CMS : 7.28 μb^{-1}

Ist pp run @ √S_{NN} = 2.76 TeV

- March 2011
- Recorded luminosity by CMS : 225 nb⁻¹

Our Solution ■ 2nd PbPb run @ √SNN = 2.76 TeV

Nov. – Dec. 2011

Recorded luminosity by CMS : 150 µb⁻¹

• pPb run @ √S_{NN} = 5.02 TeV

Jan. - Feb. 2013

Recorded luminosity by CMS : 31.7 nb⁻¹

Ond pp run @ √S_{NN} = 2.76 TeV

- Feb. 2013 (3 days)
- Recorded luminosity by CMS : 5.41 pb⁻¹

CMS Integrated Luminosity, pPb, 2013, $\sqrt{s}=$ 5.02 TeV/nucleon

Dimuons in PbPb @ 2.76 TeV

24th April 2014

Sequential melting scenario

KORE A

Cartoon for Debye screening

- The larger the binding energy, the higher the dissociation temperature T_d.
- As temperature goes up, Debye length $r_{\lambda}(T)$ decreases.

Y(nS) Double ratio in PbPb

- Y(2S) double ratio vs centrality
 - No strong centrality dependence
 - Suppressed even in the most peripheral bin

$$rac{N_{\Upsilon(2\mathrm{S})}/N_{\Upsilon(1\mathrm{S})}|_{\mathrm{PbPb}}}{N_{\Upsilon(2\mathrm{S})}/N_{\Upsilon(1\mathrm{S})}|_{\mathrm{pp}}} = 0.21 \pm 0.07 \mathrm{(stat.)} \pm 0.02 \mathrm{(syst.)}$$

- Y(3S) double ratio vs centrality
- Peak at PbPb is hard to distinguish.
 → Set the upper limit

$$\frac{N_{\Upsilon(3S)}/N_{\Upsilon(1S)}|_{\text{PbPb}}}{N_{\Upsilon(3S)}/N_{\Upsilon(1S)}|_{\text{pp}}} = 0.06 \pm 0.06 \text{(stat.)} \pm 0.06 \text{(syst.)}$$
$$< 0.17 \text{ at } 95\% \text{ C.L.}$$

- [•] Since the beam energy of proton and Pb nucleus is asymmetric, C.M frame is boosted by $\Delta y \sim 0.47$ w.r.t. lab frame.
- Symmetric range in C.M.frame [-1.93, 1.93] is selected for muon's η and dimuon's rapidity.
 - : for the 1st run (proton going to –) : [–2.4, 1.47]
 - : for the 2nd run (proton going to +) : [-1.47, 2.4]

Scenario 1 : Y state affects multiplicity differently

 Y(1S) is produced with more particles than Y(2S) and Y(3S) and affect the underlying distributions.

Scenario 2 : Multiplicity affects Y state differently

Y(1S), the most tightly bound state, is less affected than Y(2S) and Y(3S) when interacting with surrounding environment.

